giúp em với \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+.........+\dfrac{1}{2017^2}\)
Tìm x:
\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\)+ \(\dfrac{1}{10}\)+ ...+ \(\dfrac{1}{xx\left(x+1\right):2}\)= \(\dfrac{2017}{2019}\)
Mọ người giúp em với ạ! Em cảm ơn!
mn ghi giúp em chi tiết bài giải nx ạ!
A=\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+....+\(\dfrac{1}{2017^2}\)
Giải giúp e với ạ. E cảm ơn
CMR: \(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)là 1 số hữu tỉ
Ta chứng minh được công thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)
\(=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\)
\(=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)
\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)
\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{1}+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{2016}-\dfrac{1}{2017}+1+\dfrac{1}{2017}-\dfrac{1}{2018}\)
=>A là số hữu tỉ (ĐPCM)
CMR:
\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)là 1 số hữu tỉ
bạn chứng minh bài toán tổng quát : \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\)rồi áp dụng vào giải bài này nhé
Cho T = \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}\)
So sánh T với \(\dfrac{8}{7}\)
Em cần gấp! Mọi người giúp em với ạ
Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
Cộng vế với vế ta được
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow T< 2-\dfrac{1}{20}=\dfrac{39}{20}\)
mà 39/20 < 8/7 => T < 8/7
Chứng mình rằng A < 1 với A= \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}...+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2018^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2018.2019}\)
=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(=\dfrac{1}{2}-\dfrac{1}{2019}< 1\)
Vậy A < 1.
So sánh \(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\) và \(B=2018\)
\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)
X:3\(\dfrac{1}{15}\)-3/4=2\(\dfrac{1}{4}\)
X x 3\(\dfrac{2}{3}\)-1\(\dfrac{2}{3}\)=2\(\dfrac{1}{3}\)
giúp em với ạ 1h học rùiii
\(x:3\dfrac{1}{15}\) - \(\dfrac{3}{4}\) = 2\(\dfrac{1}{4}\)
\(x\): \(\dfrac{46}{15}\) - \(\dfrac{3}{4}\) = \(\dfrac{9}{4}\)
\(x\) : \(\dfrac{46}{15}\) = \(\dfrac{9}{4}\) + \(\dfrac{3}{4}\)
\(x\) : \(\dfrac{46}{15}\) = \(\dfrac{12}{4}\)
\(x\) : \(\dfrac{46}{15}\) = \(3\)
\(x\) = 3 \(\times\) \(\dfrac{46}{15}\)
\(x\) = \(\dfrac{46}{5}\)
\(x\) \(\times\) 3\(\dfrac{2}{3}\) - 1\(\dfrac{2}{3}\) = 2\(\dfrac{1}{3}\)
\(x\) \(\times\) \(\dfrac{11}{3}\) - \(\dfrac{5}{3}\) = \(\dfrac{7}{3}\)
\(x\) \(\times\) \(\dfrac{11}{3}\) = \(\dfrac{7}{3}\) + \(\dfrac{5}{3}\)
\(x\) \(\times\) \(\dfrac{11}{3}\) = \(\dfrac{12}{3}\)
\(x\times\dfrac{11}{3}\) = 4
\(x\) = 4 : \(\dfrac{11}{3}\)
\(x\) = \(\dfrac{12}{11}\)
So sánh tổng S= \(\dfrac{1}{2}\)+\(\dfrac{2}{2^2}\)+\(\dfrac{3}{2^3}\)+...+\(\dfrac{n}{2^n}\)+...+\(\dfrac{2017}{2^{2017}}\)với 2 (\(n\in N\)*)
Giải:
\(S=\dfrac{1}{2}+\dfrac{2}{2^2}+...+\dfrac{n}{2^n}+...+\dfrac{2017}{2^{2017}}\)
Với \(n>2\) thì \(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\)
Ta có:
\(\dfrac{n+1}{2^{n-1}}=\dfrac{n+1}{2^n:2}=\dfrac{2.\left(n+1\right)}{2^n}\)
\(\Rightarrow\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\)
\(=\dfrac{2.\left(n+1\right)}{2^n}-\dfrac{n+2}{2^n}\)
\(=\dfrac{2.\left(n+1\right)-n-2}{2^n}\)
\(=\dfrac{n}{2^n}\)
\(\Leftrightarrow S=\dfrac{1}{2}+\left(\dfrac{2+1}{2^{2-1}}-\dfrac{2+2}{2^2}\right)+...+\left(\dfrac{2016+1}{2^{2015}}-\dfrac{2018}{2^{2016}}\right)+\left(\dfrac{2017+1}{2^{2016}}-\dfrac{2019}{2^{2017}}\right)\)
\(S=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{2019}{2017}\)
\(S=2-\dfrac{2019}{2017}\)
\(\Leftrightarrow S=2-\dfrac{2019}{2017}< 2\)
Hay \(S< 2\)