Cho a, b, c là các số thực thoả mãn a^2+b^2+c^2=1.
Tìm min và max của ab+bc+ca
cho số thực a;b;c thỏa mãn \(a^2+b^2+c^2=1\)
tìm min max của \(P=ab+bc+ca\)
Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )
Ta có: \(\left(a+b+c\right)^2\ge0\)
<=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
<=>\(1+2\left(ab+bc+ca\right)\ge0\)
<=>\(ab+bc+ca\ge\dfrac{-1}{2}\)
hay P\(\ge\dfrac{-1}{2}\)
cho a b c là các số thực thỏa mãn a,b ≥0 0≤ c ≤ 1 và a^2 +b^2 +c^2 =3
Tìm min max P= ab + bc +ca +3(a+b+c)
cho a , b ,c là các số thực dương thay đổi thoả mãn :a + b + c = 3
tìm min \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Đặt \(a^2+b^2+c^2=t\)
Ta đi chứng minh: \(t=a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)(*)
Thật vậy: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=\left(a^3+b^3+c^3\right)+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)(**)
Áp dụng BĐT AM - GM, ta có: \(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)(do a,b dương) (1)
Tương tự ta có: \(b^3+bc^2\ge2b^2c\left(2\right);c^3+2ca^2\ge2c^2a\left(3\right)\)
Cộng theo vế của các BĐT (1), (2), (3), ta được: \(\left(a^3+b^3+c^3\right)+\left(ab^2+bc^2+ca^2\right)\ge2\left(a^2b+2b^2c+2c^2a\right)\)(***)
Từ (**) và (***) suy ra \(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\). Do đó (*) đúng.
Ta có: \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}=t+\frac{9-t}{2t}\)với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)
Bài toán trở thành tìm GTNN của \(f\left(t\right)=t+\frac{9-t}{2t}\)với \(t\ge3\)
Ta chứng minh \(f\left(t\right)\ge f\left(3\right)\Leftrightarrow t+\frac{9-t}{2t}\ge4\Leftrightarrow\frac{\left(t-3\right)\left(2t-3\right)}{2t}\ge0\)(đúng với mọi \(t\ge3\))
Vậy \(MinP=4\)khi t = 3 hay a = b = c = 1
em moi hoc laop 6 thoi
Cho các số thực a,b không âm thoả mãn a +b =1/2. Tìm Min, Max của P = a/1-a + b/1-b
Cho các số thực a,b không âm thoả mãn: a + b = \(\dfrac{1}{2}\). Tìm max và min của biểu thức: P = \(\dfrac{a}{1-a}+\dfrac{b}{1-b}\)
*Tìm min:
\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{1}{1-a}-1+\dfrac{1}{1-b}-1\)
\(\ge\dfrac{4}{\left(1-a\right)+\left(1-b\right)}-2\)
\(=\dfrac{4}{2-\dfrac{1}{2}}-2=\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{4}\). Do đó minP=2/3
*Tìm max: \(a,b\ge0\)
\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{a-ab+b-ab}{\left(1-a\right)\left(1-b\right)}\)
\(=\dfrac{\dfrac{1}{2}-2ab}{1-\left(a+b\right)+ab}=\dfrac{\dfrac{1}{2}-2ab}{\dfrac{1}{2}+ab}=\dfrac{\dfrac{3}{2}-2\left(\dfrac{1}{2}+ab\right)}{\dfrac{1}{2}+ab}\)
\(=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}+ab}-2\le\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}-2=1\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(0;\dfrac{1}{2}\right),\left(\dfrac{1}{2};0\right)\)
Vậy maxP=1
Lại rảnh rồi mk ra thêm câu đố:
Cho 3 số thực a,b,c thỏa mãn: a,b,c >= 1
ab+bc+ca=9
Tìm min và max của: a2+b2+c2
\(a^2+b^2+c^2\ge2\left(ab+bc+ac\right)=2\times9=18\)
Mình nhầm rồi. Không có 2 đâu
cho a,b,c là các số thực dương thoả mãn \(ab+bc+ca\ge3\) tìm giá trị nhỏ nhất của biểu thức A= \(\dfrac{a^2+b^2+c^2}{\sqrt{a+2016}+\sqrt{b+2016}+\sqrt{c+2016}}\)
Cho các số thực dương a,b và c thoả mãn: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)\(\ge\dfrac{3}{2}\)
CMR: \(a+b+c\ge ab+bc+ca\)
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ
VỚI CÁC SỐ THỰC DƯƠNG a , b , c thỏa mãn : a^2 + b^2 +c^2 + 2abc = 1 Tìm MAX của biểu thức P = ab + bc + ca - abc
Ta có : \(a^2+b^2+c^2\ge ab+ac+\)\(bc\)(1)
vì , ta có
(1) \(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\)\(\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)\)\(+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng) => bất đẳng thức
Ta có :
\(a^2+b^2+c^2-2abc\ge ab+bc+ac-2abc\)
<=>\(a^2+b^2+c^2+2abc-3abc\ge ab+bc+ac-2abc\)
<=> \(1-3abc\ge ab+bc+ac-2abc\)
=> MAX P=1 <=> \(\hept{\begin{cases}a=0\\b=c=1\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\a=c=1\end{cases}}\)
hoặc \(\hept{\begin{cases}c=0\\a=b=1\end{cases}}\)
Sai thì bảo mình nhé
xin lỗi Dòng thứ 8 và 9 phải là
\(a^2+b^2+c^2+2abc-4abc\ge ab+ac+bc-2abc\)
\(\Leftrightarrow1-4abc\ge ab+ac+bc-2abc\)
9999999999999999x99999999999999 =?