(X^2-6x+9)^2-15(x^2-6x+10)=1
(X^2+1)^2+3x (x^2+1)+2x^2=0
1) (4-3x) (10x-5)=0
2) (7-2x) (4+8x) = 0
3) (9-7x) (11-3x) = 0
4) (7-14x) (x-2) = 0
5) (2x+1) (x-3) = 0
6) (8-3x) (-3x+5) = 0
7) (16-8x) (2-6x) = 0
8) (x+4) (6x-12) = 0
9) (11-33x) (x+11) = 0
10) (x-1/4) (x+5/6) = 0
11) (7/8-2x) (3x+1/3) = 0
12) 3x - 2x^2 = 0
13) 5x + 10x^2 = 0
14) 4x + 3x^2 = 0
15) -8x^2 + x =0
16) 10x^2 - 15x = 0
17) x^2 -4 =0
18) 9 - x^2 = 0
19) x^2 -1 = 0
20) (x-3) (2x-1) = (2x-1) ( 2x+3)
21) (5+4x) (-x+2) = (5+4x) (7+5x)
22) (4+x) (x-5) = (3x-8) (x-5) = 0
23) (3x-8) (7-21x) - (9+2x) (7-21x)
24) (10+ 7x) (x+1) = (9x-2)(x-1)
25) (9x-4) (x-1/2) - (x-1/2) (6+x) = 0
26) 9x^2 - 1 = (3x-1) (x+4)
27) (x+7) (3x+1) = 49-x^2
28) (2x+1)^2 = (x-1)^2
29)x^3- 5x^2+6x = 0
30) 3x^2 + 5x + 2 = 0
Giảii giúpp mìnhh đyy mọii ngườii .
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
Tìm x; biết:
f.x3 – 7x2 = – 6x g.(x + 1)(x + 2)(x + 4)(x + 5) = 4
h.(x2 – 0,5) : 2x – (3x – 1)2 : (3x – 1) = 0
i. (x + 3)(x2 – 3x + 9) – x(x – 2)(x + 2) = 15
g: \(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4=0\)
\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36=0\)
\(\Leftrightarrow\left(x+3\right)^2\left(x^2+6x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{matrix}\right.\)
Giải phương trình sau:
a)(x2+x-2)(x2+x-3)=12
b)(x-7)4+(x-8)4=(15-2x)4
c)(x2-6x+9)2-15(x2-6x+10)=1
d)(x2+1)2+3x(x2+1)+2x2=0
a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)
TH1:=>x-2=0
=>x=2
TH2:x+3=0
=>x=-3
dựa vô bệt thức ta thấy
D<0=> phương trình ko có nghiệm thực
=>x=-3 hoặc 2
nhớ tick nhé
a, đặt \(x^2+x-2=t\)
\(\Rightarrow t\left(t-1\right)=12\)
\(\Rightarrow t^2-t-12=0\)
\(\Rightarrow\left(t+3\right)\left(t-4\right)=0\)
\(\Rightarrow\left(x^2+x+1\right)\left(x^2+x-6\right)=0 \)
do x^2+x+1=(x+1/2)^2+3/4 >= 0
\(\Rightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0 \)
\(\Leftrightarrow x\in\left\{-3;2\right\}\)
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
tìm x biết
1)(2x+3)^2-(2x+1)(2x-1)=5
2)(x+3)(x^2-3x+9)-x(x^2+5)=20
3)(x+2)^3-x(x^2+6x)=15
4)(x-1)(x^2+x+1)-x(x+10(x-1)=7
5)x^2-9+5(x+3)=0
giúp mk nha!!!
1, \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=5\)
\(\Leftrightarrow4x^2+12x+9-4x^2-1=5\)
\(\Leftrightarrow12x=-3\)
\(\Leftrightarrow x=\dfrac{-1}{4}\)
Vậy \(x=\dfrac{-1}{4}\)
2, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+5\right)=20\)
\(\Leftrightarrow x^3+27-x^3-5x=20\)
\(\Leftrightarrow5x=7\)
\(\Leftrightarrow x=\dfrac{7}{5}\)
Vậy...
5, \(x^2-9+5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
Vậy...
1) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=5\) (1)
\(\Leftrightarrow4x^2+12x+9-\left(4x^2-1\right)=5\)
\(\Leftrightarrow4x^2+12x+9-4x^2+1=5\)
\(\Leftrightarrow12x+10=5\)
\(\Leftrightarrow12x=5-10\)
\(\Leftrightarrow12x=-5\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{5}{12}\right\}\)
2) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+5\right)=20\) (2)
\(\Leftrightarrow x^3+27-x^3-5x=20\)
\(\Leftrightarrow27-5x=20\)
\(\Leftrightarrow-5x=20-27\)
\(\Leftrightarrow-5x=-7\)
\(\Leftrightarrow x=\dfrac{7}{5}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{7}{5}\right\}\)
3) \(\left(x+2\right)^3-x\left(x^2+6x\right)=15\) (3)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=15\)
\(\Leftrightarrow12x+8=15\)
\(\Leftrightarrow12x=15-8\)
\(\Leftrightarrow12x=7\)
\(\Leftrightarrow x=\dfrac{7}{12}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{7}{12}\right\}\)
4) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+10\right)\left(x-1\right)=7\) (4)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x\left(x+10\right)\right)=7\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2-10x\right)=7\)
\(\Leftrightarrow\left(x-1\right)\left(-9x+1\right)=7\)
\(\Leftrightarrow-9x^2+x+9x-1=7\)
\(\Leftrightarrow-9x^2+10-1=7\)
\(\Leftrightarrow-9x^2+10x-1-7=0\)
\(\Leftrightarrow-9x^2+10x-8=0\)
\(\Leftrightarrow9x^2-10x+8=0\)
\(\Leftrightarrow x\notin R\)
5) \(x^2-9+5\left(x+3\right)=0\) (5)
\(\Leftrightarrow x^2-9+5x+15=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+1}{2}\\x=\dfrac{-5-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
Vậy tập nghiệm phương trình (5) là \(S=\left\{-3;-2\right\}\)
Bài 3
1.(x-1)(x+2)+5x-5=0
2.(3x+5)(x-3)-6x-10=0
3.(x-2)(2x+3)-7x2+14x=0
4.(x+1)(x-3)-15+5x=0
5.5(2x-1)(x+3)+5x-10x2=0
Bài4
1.3x-6+(x+1)(x-2)=0
2.4x2+6x-(2x+3)(3x-x)=0
3.5x-10-(2-x)(4+x)=0
4.10-10x+(x-1)(x-3)=0
5.20x2+30x-2(x-5)(2x+3)=0
Bài 3:
1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy.......................
2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Vậy........................
3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy............................
4, 5 tương tự nhé bn!
bài 3
1 (x-1)(x+2)+5x-5=0
=>(x-1)(x+2)+(5x-5)=o
=>(x-1)(x+2)+5(x-1)=0
=>(x-1)(x+2+5)=0
=>(x-1)(x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
vậy x=1 hoặc x=-7
2. (3x+5)(x-3)-6x-10=0
=>(3x+5)(x-3)-(6x+10)=0
=>(3x+5)(x-3)-2(3x+5)=0
=>(3x+5)(x-3-2)=0
=>(3x+5)(x-5)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
giải các phương trình sau
1, √x^2+4x + √ x^2/2 -8 =0
2, √ x-1 + √ x^2 -3x +2 =0
3,√ 2+x +√ 4x^2-6x-10 =0
4, √ x^2 -9 + √x^2 -4x+3 =0
5, √ -2x^2 +3x+5 +√2x^2 -7x -15 =0
Câu 1: giải các phương trình ;
a, x.(2x-9)=3x.(x-5) b,(2x-1)^2-(2x+1)^2=4.(x-3) c,2x+3/3+3x+2/2=2,5x-1 d,2-x/2001-1=1-x/2002-x/2003
e, x+1/3+3.(2x+1)/4=2x+3.(x+1)/6+7+12x/12
Câu 2:giải các phương trình sau:
a,(x^2-6x+9)^2-15(x^2-6x+10)=1 b,(x^2+1)+3x(x^2+1)+2x^2=0 c,(x^2-9)^2=12x+1 d,x63=3x62=4x=2=0 e,x^4+x^2+6x-8=0 g, (x^2-4x)2+(x-2)62=10 h,(12x+7)(3x+2)(2x+1)=3 i,(x^2+5x+4)(9x^2+30x+16)=4x^2 k, (x^2+x+1)^2=3(x^4+x^2+1) l, 6x^4+25x^3+12x^2-25x+6=0
1.Tính
a, 5x^3yz . (-7x^2y^3)
b, 6x(x-5) -x(6x+3)
c, (x-9)(x^2-2x-1)
2.Cho A (x)=10-2x+4x^3-5x^2
B(x)=-10x^3-5x+6x^2-20
Tính A(x)+B(x); A(x)-B(x)
3.Tìm nghiệm
a,M(x)= 5x+20
b,N(x)=100x^2-49
c,P(x)=3x-15
b. 6x(x - 5) - x(6x + 3)
= x(6x - 30) - x(6x + 3)
= x(6x - 30 - 6x - 3)
= x(-33)
= -33x