CMR: \(x^2+y^2+1\ge xy+x+y\)
CMR : x2 + y2 - xy ≥ x + y - 1
Giả sử điều cần c/m là đúng
Ta có : \(x^2+y^2-xy\ge x+y-1\)
\(\Leftrightarrow2x^2+2y^2-2xy\ge2x+2y-2\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\) ( điều này luôn đúng )
\(\Rightarrow\) Điều giả sử là đúng
\(\Rightarrow x^2+y^2-xy\ge x+y-1\left(đpcm\right)\)
1, x,y,z∈N*. CMR x+3z-y là hợp số biết `x^2+y^2=z^2`
2,Tìm n∈N* để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\)
3, CMR:\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
Cho số thực x và y thỏa mãn \(x\ne y;x\ne0;y\ne0\)
CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)
Cho x,y thỏa mãn xy\(\ge\)1. CMR:
1/(1+x²) + 1/(1+y²) \(\ge\) 2/(1+xy)
Với a=x,b=y nhé
CMR : x2+y2-xy\(\ge\)x+y-1
Ta có các bất đẳng thức đúng : \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-2xy+y^2\ge0\\x^2-2x+1\ge0\\y^2-2y+1\ge0\end{cases}}\)
Cộng vế với vế ta được : \(x^2-2xy+y^2+x^2-2x+1+y^2-2y+1\ge0\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2-xy-x-y+1\right)\ge0\)
\(\Leftrightarrow x^2+y^2-xy-x-y+1\ge0\)
\(\Rightarrow x^2+y^2-xy\ge x+y-1\)(đpcm)
Cho xy \(\ge\) 1. CMR: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Biến đổi tương đương, do mọi hạng tử đều dương nên:
\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\ge2\left(x^2y^2+x^2+y^2+1\right)\)
\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy=2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow x^3y+xy^3-2x^2y^2-\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) luôn đúng do \(xy\ge1\Rightarrow xy-1\ge0\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\)
Cho \(x,y\ge1.CMR:\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cái này biến đổi tương đương nhé, t có mỗi cách đó !
ta có BĐT cần chứng minh
\(\Leftrightarrow\left(1+xy\right)\left(1+x^2\right)+\left(1+xy\right)\left(1+y^2\right)\ge2\left(1+y^2\right)\left(1+x^2\right)\)
\(\Leftrightarrow1+x^2+xy+x^3y+1+y^2+xy+y^3\ge2\left(1+x^2+y^2+x^2y^2\right)\)
\(\Leftrightarrow2xy+x^3y+xy^3-x^2-y^2-2x^2y^2\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)
bđt này luôn đúng với \(x,y\ge1\)
dấu = xảy ra <=> x=y >=1
^_^
chọn của vũ tiền châu nhé
nhớ đêý
cảm ơn
t i c k nhé
Cho các số thực dương x,y. CMR: \(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{1}{1+xy}\)
\(\left(1+x\right)^2=\left(1.1+\sqrt{xy}.\sqrt{\dfrac{x}{y}}\right)^2\le\left(1+xy\right)\left(1+\dfrac{x}{y}\right)=\dfrac{\left(1+xy\right)\left(x+y\right)}{y}\)
\(\Rightarrow\dfrac{1}{\left(1+x\right)^2}\ge\dfrac{y}{\left(1+xy\right)\left(x+y\right)}\)
Tương tự ta có: \(\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{x}{\left(1+xy\right)\left(x+y\right)}\)
Cộng vế với vế:
\(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{x+y}{\left(1+xy\right)\left(x+y\right)}=\dfrac{1}{1+xy}\)
Dấu "=" xảy ra khi \(x=y=1\)
Bài 1:a) Tìm các cặp số nguyên (x;y) thảo mãn :y2+2xy-3x-2=0
b) Cho x,y thỏa mãn xy≥1.CMR:\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\) ≥ \(\frac{2}{1+xy}\)
a)
Coi đây là pt bậc hai ẩn $y$. Để pt có nghiệm nguyên thì:
$\Delta'=x^2+3x+2=t^2$ với $t\in\mathbb{Z}$)
$\Rightarrow 4x^2+12x+8=4t^2$
$\Leftrightarrow (2x+3)^2-1=(2t)^2$
$\Leftrightarrow 1=(2x+3-2t)(2x+3+2t)$
Xét 2 TH sau:
TH1: $2x+3-2t=2x+3+2t=1$
$\Rightarrow x=-1; y=1$
TH2: $2x+3-2t=2x+3+2t=-1$
$\Rightarrow x=-2; y=2$
Vậy.......
b) Ta có:
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
\(\Leftrightarrow \frac{x^2+y^2+2}{x^2+y^2+x^2y^2+1}\geq \frac{2}{xy+1}\)
\(\Leftrightarrow (x^2+y^2+2)(xy+1)\geq 2(x^2+y^2+x^2y^2+1)\)
\(\Leftrightarrow xy(x^2+y^2-2xy)-(x^2+y^2-2xy)\geq 0\)
$\Leftrightarrow (x-y)^2(xy-1)\geq 0$
Luôn đúng với mọi $xy\geq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y$ hoặc $xy=1$