Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Linh
Xem chi tiết
Khánh Linh
Xem chi tiết
Nguyễn Thanh Hằng
8 tháng 8 2017 lúc 11:49

Ta có :

\(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Ta thấy :

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)

từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Tường Nguyễn Thế
Xem chi tiết
Nguyễn Ngọc Gia Hân
Xem chi tiết
Nguyễn Ngọc Gia Hân
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2021 lúc 19:31

Xét khai triển:

\(\left(1+x\right)^{2017}=C_{2017}^0+xC_{2017}^1+x^2C_{2017}^2+...+x^{2017}C_{2017}^{2017}\)

Lấy tích phân 2 vế:

\(\int\limits^1_0\left(1+x\right)^{2017}=\int\limits^1_0\left(C_{2017}^0+xC_{2017}^1+...+x^{2017}C_{2017}^{2017}\right)\)

\(\Leftrightarrow\dfrac{2^{2018}-1}{2018}=C_{2017}^0+\dfrac{1}{2}C_{2017}^1+...+\dfrac{1}{2018}C_{2017}^{2017}\)

Vậy \(S=\dfrac{2^{2018}-1}{2018}\)

Nguyễn Ngọc Gia Hân
Xem chi tiết
Some one
Xem chi tiết

Giải:

\(S=\dfrac{1}{2}+\dfrac{2}{2^2}+...+\dfrac{n}{2^n}+...+\dfrac{2017}{2^{2017}}\) 

Với \(n>2\) thì \(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\) 

Ta có:

\(\dfrac{n+1}{2^{n-1}}=\dfrac{n+1}{2^n:2}=\dfrac{2.\left(n+1\right)}{2^n}\) 

\(\Rightarrow\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\) 

\(=\dfrac{2.\left(n+1\right)}{2^n}-\dfrac{n+2}{2^n}\) 

\(=\dfrac{2.\left(n+1\right)-n-2}{2^n}\) 

\(=\dfrac{n}{2^n}\) 

  \(\Leftrightarrow S=\dfrac{1}{2}+\left(\dfrac{2+1}{2^{2-1}}-\dfrac{2+2}{2^2}\right)+...+\left(\dfrac{2016+1}{2^{2015}}-\dfrac{2018}{2^{2016}}\right)+\left(\dfrac{2017+1}{2^{2016}}-\dfrac{2019}{2^{2017}}\right)\)

\(S=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{2019}{2017}\) 

\(S=2-\dfrac{2019}{2017}\)  

\(\Leftrightarrow S=2-\dfrac{2019}{2017}< 2\) 

Hay \(S< 2\)

George H. Dalton
Xem chi tiết