\(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)
Bài 1: Tính gái trị biểu thức sau:
1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\)
2) \(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)
3) \(\dfrac{27.18+27.103-120.27}{15.33+33.12}\)
1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)
1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\) \(=\dfrac{-5}{2}:\dfrac{1}{4}=-10\)
Tính giá trị biểu thức:
\(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)
\(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)
\(=\dfrac{298}{719}.0-\dfrac{2011}{2012}\)
\(=0-\dfrac{2011}{2012}\)
\(=-\dfrac{2011}{2012}\)
tính giá trị biểu thức
a,\(\dfrac{298}{719}:(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{3})-\dfrac{2011}{2012}\)
b,\(\dfrac{27.18+27.103-120.27}{15.33+33.12}\)
a) \(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{3}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\left(\dfrac{3}{12}+\dfrac{1}{12}+\dfrac{4}{12}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\left(\dfrac{3+1+4}{12}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\dfrac{2}{3}-\dfrac{2011}{2012}=\dfrac{298}{719}\cdot\dfrac{3}{2}-\dfrac{2011}{2012}=\dfrac{149.3}{719.1}-\dfrac{2011}{2012}=\dfrac{447}{719}-\dfrac{2011}{2012}=\dfrac{889364}{1446628}-\dfrac{1445909}{1446628}=\dfrac{889364-1445909}{1446628}=-\dfrac{556545}{1446628}.\)b)\(\dfrac{27\cdot18+27+103-120\cdot27}{15\cdot33+33\cdot12}=\dfrac{27\left(18+103-120\right)}{33\left(15+12\right)}=\dfrac{27\cdot1}{33\cdot27}=\dfrac{1\cdot1}{33\cdot1}=\dfrac{1}{33}\)
Tính:
a) \(A=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)b) \(B=\dfrac{1-3}{1\cdot3}+\dfrac{2-4}{2\cdot4}+\dfrac{3-5}{3\cdot5}+\dfrac{4-6}{4\cdot6}+...+\dfrac{2011-2013}{2011\cdot2013}+\dfrac{2012-2014}{2012\cdot2014}+\dfrac{2013-2015}{2013\cdot2015}\)Giúp mình với!
\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)
\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)
\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)
\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)
\(2A=2+3+4+5+6+...+2012+2013+2014\)
\(2A=\dfrac{\left(2+2014\right).2013}{2}\)
\(A=\dfrac{2016.2013}{4}=504.2013\)
\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)
\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)
\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)
\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)
\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)
\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)
\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)
\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)
B=\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right):\left(2012+\dfrac{2011}{2}+...+\dfrac{2}{2011}+\dfrac{1}{2012}\right)\).Tính B
Đặt \(B=A\div C\)
\(C=2012+\dfrac{2011}{2}+...+\dfrac{1}{2012}=2012+\dfrac{2013-2}{2}+\dfrac{2013-3}{3}+...+\dfrac{2013-2012}{2012}\)
\(C=2012+\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2012}-1-1-...-1\)
\(C=2012+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)-2011\)
\(C=1+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)=\dfrac{2013}{2013}+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)
\(C=2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=2013.A\)
\(\Rightarrow B=\dfrac{A}{C}=\dfrac{1}{2013}\)
Bài 1:
a. \(\left(5^{2010}+5^{2012}+5^{2014}\right):\left(5^{2011}+5^{2009}+5^{2007}\right)\)
b. \(\left(-\dfrac{7}{45}\right)-\left(-\dfrac{1}{4}\right)-\left(-\dfrac{3}{5}\right)+\dfrac{1}{12}+\dfrac{2}{3}+\dfrac{1}{39}-\left(-\dfrac{5}{9}\right)\)
\(a)\left(5^{2010}+5^{2012}+5^{2014}\right):\left(5^{2011}+5^{2009}+5^{2007}\right)\)
\(=\dfrac{5^{2007}\left(5^3+5^5+5^7\right)}{5^{2007}\left(5^4+5^2+1\right)}=\dfrac{5^3+5^5+5^7}{5^4+5^2+1}\)
\(=\dfrac{125+3125+78125}{625+25+1}=\dfrac{81375}{651}=125\)
\(b)-\dfrac{7}{45}+\dfrac{1}{4}+\dfrac{3}{5}+\dfrac{1}{12}+\dfrac{2}{3}+\dfrac{1}{39}+\dfrac{5}{9}\)
\(=\dfrac{-7.52+1.585+3.468+1.195+2.780+1.60-5.260}{2340}\)
\(=\dfrac{-364+585+1404+195+1560+60-1300}{2340}\)
\(=\dfrac{2140}{2340}=\dfrac{107}{117}\)
1/ Chứng tỏ rằng : B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{8^2}< 1\)
2/ Rút gọn: B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{20}\right)\)
3/ Tính giá trị của biểu thức: A= \(\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)
4/ So sánh : A= \(\dfrac{2011+2012}{2010+2013}\) và B= \(\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)
\(B< 1\)
2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)
\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)
\(B=\dfrac{1}{20}\)
3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)
\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)
\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)
\(A=11\)
4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)
Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)
\(\Rightarrow B>A\)
Tính
a, \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
b, \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).....\left(1-\dfrac{1}{2015}\right)\)
BT1: Tính
1) \(\dfrac{1}{2011}+\dfrac{2012.2010}{2011}-2012\)
2) \(\left(2-\dfrac{2}{3}\right)\left(2-\dfrac{4}{3}\right)\left(2-\dfrac{5}{4}\right)\left(2-\dfrac{6}{5}\right)\)
1) \(\dfrac{1}{2011}+\dfrac{2012.2010}{2011}-2012\)=\(\dfrac{1+2012.2010-2012.2011}{2011}\)
= \(\dfrac{1+2012.\left(2010-2011\right)}{2011}\)= \(\dfrac{1+2012.\left(-1\right)}{2011}\)
= \(\dfrac{-2011}{2011}=-1\)