Tìm x, biết:
a) 5x2\(-\)15x=0
b) 2x3\(-\)8x=0
c) (x+1)\(-\)x\(-\)1=0
Giải các phương trình sau:
a) 5 x − 1 5 x + 1 = 0 ; b) x − 1 2 3 x − 1 = 0 ;
c) 2 x 3 + 4 x + 3 x 2 − 1 = 0 ; d) x 2 − 4 x 4 − 4 x + 5 3 = 0 .
1 thưc hiện phép tính
a, 7x2.(2x3+3x5 ) b,(x3-x2+x-1):(x-1)
2 tìm x biết x : x2-8x+7=0
1. a) \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)
b) \(\left(x^3-x^2+x-1\right):\left(x-1\right)=\dfrac{x^3-x^2+x-1}{x-1}\)
\(=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{x-1}=\dfrac{\left(x-1\right)\left(x^2+1\right)}{x-1}=x^2+1\)
2: \(x^2-8x+7=0\)
=>\(x^2-x-7x+7=0\)
=>\(x\left(x-1\right)-7\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x-7\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
1:
a: \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=21x^7+14x^5\)
b: \(\dfrac{x^3-x^2+x-1}{x-1}=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{\left(x-1\right)}\)
\(=x^2+1\)
1)
\(a,7x^2\cdot(2x^3+3x^5)\\=7x^2\cdot2x^3+7x^2\cdot3x^5\\=14x^5+21x^7\\---\\b,(x^3-x^2+x-1):(x-1)(dkxd:x\ne 1)\\=[x^2(x-1)+(x-1)]:(x-1)\\=(x-1)(x^2+1):(x-1)\\=x^2+1\)
2)
\(x^2-8x+7=0\\\Leftrightarrow x^2-x-7x+7=0\\\Leftrightarrow x(x-1)-7(x-1)=0\\\Leftrightarrow (x-1)(x-7)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
\(\text{#}Toru\)
bài 3 phân tích đa thức sau thành nhân tử
a 4x2 -16 + (3x +12) (4-2x)
b x3 + X2Y -15x -15y
c 3(x+8) -x2 -8x
d x3 -3x2 + 1 -3x
e 5x2 -5y2 -20x + 20y
kkk =0)
a) \(4x^2-16+\left(3x+12\right)\left(4-2x\right)\)
\(=\left(2x-4\right)\left(2x+4\right)-3\left(x+4\right)\left(2x-4\right)\)
\(=\left(2x-4\right)\left(2x+4-3x-12\right)\)
\(=-\left(2x-4\right)\left(x+8\right)\)
b) \(x^3+x^2y-15x-15y\)
\(=x^2\left(x+y\right)-15\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-15\right)\)
c) \(3\left(x+8\right)-x^2-8x\)
\(=3\left(x+8\right)-x\left(x+8\right)\)
\(=\left(x+8\right)\left(3-x\right)\)
d) \(x^3-3x^2+1-3x\)
\(=x^3+1-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
d) \(5x^2-5y^2-20x+20y\)
\(=5\left(x^2-y^2\right)-20\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-20\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y-4\right)\)
a)A={nϵN/n(n+1)≤15}
b)B={3k-1/kϵZ,-5≤k≤3}
c)C={xϵZ//x/<10}
d)D={xϵQ/x2-3x+1=0}
e)E={xϵZ/2x3-5x2+2x=0}
f)F={xϵN/x<20 và x chia hết cho 3}
\(a,A=\left\{0;1;2;3;4\right\}\\ b,B=\left\{-16;-13;-10;-7;-4;-1;2;5;8\right\}\\ c,C=\left\{-9;-8;-7;...;7;8;9\right\}\\ d,x^2-3x+1=0\\ \Delta=9-4=5\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\\ \Leftrightarrow D=\left\{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right\}\)
\(e,2x^3-5x^2+2x=0\\ \Leftrightarrow x\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow E=\left\{0;2\right\}\\ f,F=\left\{0;3;6;9;12;15;18\right\}\)
Tìm x, biết.
a) x+ 5x2 = 0 b)(x+3)2+(4+x)(4-x)=10
c) 5x( x – 1) = x - 1 d) x2 -2x -3 = 0
\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)
\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Phân tích
a,(x2 + x + 2)3 - (x+1)3 = x6 +1 b,(x2 + 10x + 8)2 - (8x + 4)(x2 + 8x+7)
c, A= x4 + 2x3 + 3x2 + 2x+4 d,B= x4 + 4x3 + +8x2 + 8x + 4
e, C= x4 - 2x3 + 5x2 - 4x + 4
tìm x
5x2 - 15x = 0
5x2 - 15x = 0
5x(x-3)=0
suy ra 2 trường hợp
x=0
x-3=0=>x=3
5x2-15x=0
5x(x-3) =0
TH1: 5x=0 TH2: x-3=0
=>x=0 => x=3
Vậy x thuộc {0;3}
Bài 5:
1) a) Cho hai đa thức:
P (x) = 5x2 + 3x3 - 5x2 + 2x3 – 2 +4x – 4x2 + x3
Q(x) = 6x – x3 + 5 – 4x3 + 6 – 3x2 – 7x2
Tính M(x) = P(x) + Q(x)
b) Tìm C(x) biết: (5x2 + 9x – 3x4 + 7x3 -12) + C(x) = -2x3 + 9 – 6x + 7x4 -2x3
2) Tìm nghiệm của các đa thức sau
a) 4x - b) x2 – 4x +3
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
2(x-3)(x2+1)+15x-5x2=0
\(\Leftrightarrow\left(x-3\right)\left(2x^2+2\right)+5x\left(3-x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\)
=>(x-3)(x-2)(2x-1)=0
=>x=3 hoặc x=2 hoặc x=1/2
\(2\left(x-3\right)\left(x^2+1\right)+15x-5x^2=0\\ \Leftrightarrow\left(x-3\right)\left(2x^2+2\right)-5x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left[\left(2x^2-4x\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(2\left(x-3\right)\left(x^2+1\right)+15x-5x^2=0\)
\(\Leftrightarrow2x^3+2x-6x^2-6+15x-5x^2=0\)
\(\Leftrightarrow2x^3-11x^2+17x-6=0\)
\(\Leftrightarrow2x^3-4x^2-7x^2+14x+3x-6=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-7x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-7x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-6x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-1\right)-3\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{1}{2};3\right\}\)