A=\(\dfrac{n-5}{n+1}\)
Tìm n để A tối giản
Cho Biểu Thức : \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\left(n\in Z,n\ne3\right)\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là p/s tối giản
.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
Cho A=\(\dfrac{n-1}{n-2}\)( n∈Z;n≠2). Tìm n để A là phân số tối giản
Để M=n−1/n−2 là phân số tối giản thì ƯCLN (n – 1, n -2) = 1.
Gọi ƯCLN (n - l, n - 2) = d => n – 1 ⋮d; n – 2 ⋮d
=> ( n – 1) – ( n – 2) d => 1⋮d => d = 1 với mọi n. Vậy với mọi n ∈ℤ thì M=n−1/n−2 là phân số tối giản.
A=\(\dfrac{n+1}{n-3}\) (n∈Z)
a)Tìm n để A là phân số b)Tìn n để A là phân số tối giản c)Tìm n để A có giá trị lớn nhất
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
a)Để A là phân số thì n−3≠0n−3≠0 hay n≠3
b)câu b mình ko chắc chắn lắm
n+1⋮n-3
n-3+4⋮n-3
vì n-3 ⋮ n-3
nên 4⋮n-3
⇒n-3∈Ư(4)
Ư(4)={1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 3 | 5 | 1 | 7 | -1 |
⇒n∈{4;3;5;1;7;-1}
Tìm n để các phân số sau tối giản:
A,\(\dfrac{3n+4}{n-1}\)
B,\(\dfrac{2n-9}{n-1}\)
C,\(\dfrac{n²-n-7}{n-1}\)
Help me
A =\(\dfrac{n+2}{n+1}\) với n \(\ne\) 3
a, tìm n để A là số nguyên
b, chứng minh A là phân số tối giản
a) Để A là số nguyên thì \(n+2⋮n+1\)
\(\Leftrightarrow n+1+1⋮n+1\)
mà \(n+1⋮n+1\)
nên \(1⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(1\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)(thỏa ĐK)
Vậy: \(n\in\left\{0;-2\right\}\)
b) Gọi d\(\in\)ƯC(n+2;n+1)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮d\\n+1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+2;n+1\right)=1\)
hay A là phân số tối giản(Đpcm)
Cho phân số A= \(\dfrac{2n+3}{4n+1}\) ( \(n\in Z\) )
a) Tìm n để A= \(\dfrac{13}{21}\)
b) Tìm tất cả các giá trị của n để A có giá trị là phân số tối giản
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
Cho biểu thức A = \(\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
a. Tìm n để A nhận giá trị nguyên
b. Tìm n để A là phân số tối giản
Làm luôn nha không ghi đề xin lỗi
a)A=\(\dfrac{2.n+1+3.n+5-4.n+5}{n-3}\)
A=\(\dfrac{5.n+6-4.n+5}{n-3}\)
A=\(\dfrac{n+1}{n-3}\)
A=\(\dfrac{n-3+4}{n-3}\)
A=\(\dfrac{n-3}{n-3}\)+\(\dfrac{4}{n-3}\)
A=1+\(\dfrac{4}{n-3}\)
Để A nguyên thì 4\(⋮\)n-3 hay n-3\(\in\)Ư(4).Ta có bảng sau:
n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 4 | 5 | 7 | 2 | 1 |
-1 |
Vậy n\(\in\){ 4;5;7;2;1;-1)
b)Ta có A=\(\dfrac{n+1}{n-3}\)
Gọi ước nguyên tố của n+1 và n-3 là d
Ta có n+1\(⋮\)d
n+3\(⋮\)d
\(\Rightarrow\)n-3-n-1\(⋮\)d
\(\Rightarrow\)4\(⋮\)d
Vì d là ước nguyên tố nên d=2
Ta có n+1\(⋮\)d
n-3\(⋮\)d
\(\Rightarrow\)n+1-2\(⋮\)d
n-1\(⋮\)2
\(\Rightarrow\)n=2.k+1
Vậy n\(\ne\)2.k+1 hay n là số chẵn thì A là phân số tối giản
Lý giải câu b vì sao lại ước nguyên tố :Do là phân số tối giản nên số nguyên tố sẽ không chia hết cho bất kì số nào nên mới làm A tối giản được
Có hiểu không bạn,chắc không hiểu
cho phân số A=n-5/n+1 (n thuộc Z ; n khác 1)
a) Tìm n để A có giá trị nguyên
b) Tìm n để A là phân số tối giản
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
Bài 7 : Tìm n để số sau là số nguyên tố :
A = \(\dfrac{n+8}{2n-5}\)
Bài 6 : Tìm các chữ số a,b,c,d \(\varepsilon\) N :
\(\dfrac{30}{43}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)
Bài 8 : Phân số \(\dfrac{5n+6}{8n+7}\left(n\varepsilon N\right)\)có thể rút gọn được cho những số nào ?
Bài 9 : Tìm tất cả các số TN n để phân số \(\dfrac{18n+3}{21n+7}\)có thể rút gọn được tối giản ?
Bài 10 : a) Cho phân số \(\dfrac{a}{b}\left(a,b\varepsilon N,a< b,b\ne0\right)\).Chứng minh rằng phân số \(\dfrac{b-a}{b}\)tối giản.
b) Phân số \(\dfrac{a}{b}\)tối giản ( a,b \(\varepsilon\)N , b \(\ne0\)) . Phân số a/a+b có tối giản ko ?
Các bạn ơi giúp mk với mai mk phải nộp rồi làm ơn nhanh lên nha