7hằng đẳng thức.
x2 + 4x + 4=
4x2 - 4x + 1=
4x2 + 12x +9=
9x2 + 30x +25=
4x2 - 20x + 25 =
Viết các đa thức sau thành tích
1. ( 3x + 2)2 - 4
2. 4x2 - 25y2
3. 4x2- 49
4. 8z3 + 27
5. \(\dfrac{9}{25}\)x4 - \(\dfrac{1}{4}\)
6. x32 - 1
7. 4x2 + 4x + 1
8. x2 - 20x + 100
9. y4 -14y2 + 49
10. 125x3 - 64y3
1. ( 3x + 2)2 - 4
= (3x+2-2)(3x+2+2)
= 3x(3x+4)
2. 4x2 - 25y2
= (2x-5y)(2x+5y)
3. 4x2- 49
=(2x-7)(2x+7)
4. 8z3 + 27
=(2z+3)(4x2-6z+9)
5. \(\dfrac{9}{25}x^4-\dfrac{1}{4}\)
= \((\dfrac{3}{5}x^2-\dfrac{1}{2})(\dfrac{3}{5}x^2+\dfrac{1}{2})\)
6. x32 - 1
=(x16-1)(x16+1)
7. 4x2 + 4x + 1
=(2x+1)2
8. x2 - 20x + 100
=(x-10)2
9. y4 -14y2 + 49
=(y2-7)2
10. 125x3 - 64y3
= (5x-4y)(25x2+20xy+16y2)
1) \(\left(3x+2\right)^2-4=\left(3x+2+2\right)\left(3x+2-2\right)=3x\left(3x+4\right)\)
2) \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
3) \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)
4) \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
6) \(x^{32}-1=\left(x^{16}-1\right)\left(x^{16}+1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
7) \(4x^2+4x+1=\left(2x+1\right)^2\)
8) \(x^2-20x+100=\left(x-10\right)^2\)
9) \(y^4-14y^2+49=\left(y^2-7\right)^2\)
a)4x2-4y2-20x+20y
b)16x2-25+(4x-5)
c)(x+5y)3
e)x2+4x+4-y2
g)x2-3x-4
\(a,4x^2-4y^2-20x+20y=4\left(x^2-y^2\right)-\left(20x-20y\right)=4\left(x-y\right)\left(x+y\right)-20\left(x-y\right)=\left(x-y\right)\left(4x+4y-20\right)=4\left(x-y\right)\left(x+y-5\right)\\ b,16x^2-25+\left(4x-5\right)=\left(4x-5\right)\left(4x+5\right)+\left(4x-5\right)=\left(4x-5\right)\left(4x+5+1\right)=\left(4x-5\right)\left(4x+6\right)=2\left(4x-5\right)\left(2x+3\right)\)
\(c,\left(x+5y\right)^3=x^3+15x^2y+75xy^2+125y^3\\ e,x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ g,x^2-3x-4=\left(x^2-4x\right)+\left(x-4\right)=x\left(x-4\right)+\left(x-4\right)=\left(x+1\right)\left(x-4\right)\)
bài 2: viết cá đa thức sau dưới dạng hằng đẳng thức đáng nhớ sau :
a,x2+2x+1=
b,y2+4y+4=
c,9-6x+x2=
d,a2-14a+49=
e,m2-4m+4=
f,4x2-4x+1=
g,a2+10a+25=
h,100-20z+z2=
i,x2+6xy+9y2=
j,4x2-12xz+25b2=
k,a2+10ab+25b2=
l,x4+2x2+1=
m,y6-2y3+1=
n,c10-10c5+25=
o,9x4+12x2y+4y2=
p,25m4n6-10m2n3=
em đang cần gấp ,giúp em với
\(a,=\left(x+1\right)^2\\ b,=\left(y-2\right)^2\\ c,=\left(x-3\right)^2\\ d,=\left(a-7\right)^2\\ e,=\left(m-2\right)^2\\ f,=\left(2x-1\right)^2\\ g,=\left(a+5\right)^2\\ h,=\left(z-10^2\right)\\ i,=\left(x+3y\right)^2\\ j,=\left(2x-5b\right)^2\\ k,=\left(a+5\right)^2\\ l,=\left(x^2+1\right)^2\\ m,=\left(y^3-1\right)^2=\left(y-1\right)^2\left(y^2+y+1\right)^2\\ n,=\left(c^5-5\right)^2\\ o,=\left(3x^2+2y\right)^2\\ p,=5m^2n^3\left(5m^2n^3-2\right)\)
Tìm x, biết
b) x2 - 2x + 1 = 4
c) x2 - 4x + 4 = 9
d) 4x2 - 4x + 1 = 4
e) x2 - 2x - 8 = 0
f) 9x2 - 6x - 8 = 0
b)x2-2x+1=4
⇔(x-1)2=4
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
c)x2-4x+4=9
⇔ (x-2)2=9
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
d)4x2-4x+1=4
⇔ (2x-1)2=4
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
e)x2-2x-8=0
⇔ x2-4x+2x-8=0
⇔ x(x-4)+2(x-4)=0
⇔(x-4)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
f)9x2-6x-8=0
⇔ 9x2-12x+6x-8=0
⇔ 3x(3x-4)+2(3x-4)=0
⇔ (3x-4)(3x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a/ $=(x-2)^2$
b/ $=(2x+1)^2$
c/ $=(4x-3y)(4x+3y)$
d/ $=(1-x)(x+7)$
e/ $=(-x+1)(5x-1)$
f/ $=(x-y)(x^2+xy+y^2)$
g/ $=(3+x)(9-3x+x^2)$
h/ $=(x+2)^3$
i/ $=(1-x)^3$
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
CMR giá trị của các biểu thức sau không âm với mọi giá trị của biến x: A=x2 –3x+10 B = x2 – 5x + 2021 C = 4x2 + 4x + 5 D = 9x2 – 12x + 6
a: ta có: \(A=x^2-3x+10\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)
b: Ta có: \(B=x^2-5x+2021\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)
Tìm x, biết
a) 4(x-2)2=4
b) 5(x2-6x+9)=5
c) 4x2+4x+1=0
d) 9x2+6x+1=2
a)
`4(x-2)^2 =4`
`<=>(x-2)^2 =1`
`<=>x-2=1` hoặc `x-2=-1`
`<=>x=3` hoặc `x=1`
b)
`5(x^2 -6x+9)=5`
`<=>(x-3)^2 =1`
`<=>x-3=1`hoặc `x-3=-1`
`<=>x=4` hoặc `x=2`
c)
`4x^2 +4x+1=0`
`<=>(2x+1)^2 =0`
`<=>2x+1=0`
`<=>x=-1/2`
d)
`9x^2 +6x+1=2`
`<=>(3x+1)^2 =2`
\(< =>\left[{}\begin{matrix}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{\sqrt{2}-1}{3}\\x=\dfrac{-\sqrt{2}-1}{3}\end{matrix}\right.\)
(x2 + 9) (9x2 -1) = 0
(4x2 -9) (2x-1 -1) =0
( 3x+2) (9-x2 ) =0
(3x+3)2 ( 4x - 42 ) =0
2(x-5) ( x+2) =1
a: (x^2+9)(9x^2-1)=0
=>9x^2-1=0
=>x^2=1/9
=>x=1/3 hoặc x=-1/3
b: (4x^2-9)(2^(x-1)-1)=0
=>4x^2-9=0 hoặc 2^(x-1)-1=0
=>x^2=9/4 hoặc x-1=0
=>x=1;x=3/2;x=-3/2
c: (3x+2)(9-x^2)=0
=>(3x+2)(3-x)(3+x)=0
=>\(\left[{}\begin{matrix}3x+2=0\\3-x=0\\3+x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};3;-3\right\}\)
d: (3x+3)^2(4x-4^2)=0
=>3x+3=0 hoặc 4x-16=0
=>x=4 hoặc x=-1
e: \(2^{\left(x-5\right)\left(x+2\right)}=1\)
=>(x-5)(x+2)=0
=>x-5=0 hoặc x+2=0
=>x=5 hoặc x=-2