Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
T.Thùy Ninh
27 tháng 7 2017 lúc 14:38

\(\dfrac{a+b}{3a-b}+\dfrac{1}{a+b}.\left(\dfrac{a^2-b^2}{3a-b}\right)\)

ĐKXĐ: \(a;b\ne0\)

\(\dfrac{a+b}{3a-b}+\dfrac{1}{a+b}.\dfrac{\left(a-b\right)\left(a+b\right)}{3a-b}\)

\(=\dfrac{a+b}{3a-b}+\dfrac{a-b}{3a-b}\)

\(=\dfrac{a+b-a+b}{3a-b}=\dfrac{2b}{3a-b}\)

Học tốt nha<3

TrịnhAnhKiệt
Xem chi tiết
Cíuuuuuuuuuu
Xem chi tiết
sdveb slexxx  acc 2 còn...
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 8:43

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Bi Bi
Xem chi tiết
Kiều Vũ Linh
14 tháng 10 2023 lúc 9:42

B, C và D

Kiều Vũ Linh
14 tháng 10 2023 lúc 9:50

B, C và D không phải hằng đẳng thức

Vinh Nguyễn Quang
Xem chi tiết
uihugy
Xem chi tiết
bou99
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:02

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:07

Bài 1 : 

a^2 + b^2 + 9 = ab + 3a + 3b 

<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b 

<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0 

<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0 

Dấu ''='' xảy ra khi a = b = 3 

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 15:14

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 12 2018 lúc 9:53

Đáp án D

Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu  (S) và mặt phẳng (P) sao cho KM lớn nhất

Thành Nguyễn
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 13:34

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$

$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$

$\Rightarrow C^2\leq 32.4$

$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$