tìm x biết
a, 2x - 4 = 0
b, 8x . ( x - 2 ) = 3
tìm x biết
a/x^3+3x^2+3x+2=0
b/x^4-2x^3+2x-1=0
c/x^4-3x^3-6x^2+8x=0
a) \(x^3+3x^2+3x+2=0\)
<=> \(x^3+x^2+x+2x^2+2x+2=0\)
<=> \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
<=> \(\left(x+2\right)\left(x^2+x+1\right)=0\)
tự làm
b) \(x^4-2x^3+2x-1=0\)
<=> \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)
<=> \(\left(x-1\right)^3\left(x+1\right)=0\)
tự làm
c) \(x^4-3x^3-6x^2+8x=0\)
<=> \(x\left(x^3-3x^2-6x+8\right)=0\)
<=> \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)
<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)
<=> \(x\left(x-4\right)\left(x^2+x-2\right)=0\)
<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)
tự làm
Tìm x, biết:
a) 8x(x - 2017) - 2x + 4034 = 0; b) x 2 + x 2 8 = 0;
c) 4 - x = 2 ( x - 4 ) 2 ; d) ( x 2 + 1)(x - 2) + 2x = 4.
Cho biểu thức: A ={ (4x/x+2 )+ (8x² / 4-x²)} : {(x-1/x²-2x)-(2/x)} với x = ±2,x≠0,x≠3. a) Rút gọn A. b) Tính giá trị của 4 biết x^{2}+2x=15 c) Tìm x biết |A|> A
a: \(A=\left[\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right)\right]:\left[\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right]\)
\(=\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)
\(=\dfrac{4x\left(x-2\right)-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2\left(x-2\right)}{x\left(x-2\right)}\)
\(=\dfrac{-8x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-2\right)}{x-1-2x+4}\)
\(=\dfrac{-8x^2}{\left(x+2\right)\cdot\left(-x+3\right)}\)
\(=\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}\)
b: \(x^2+2x=15\)
=>\(x^2+2x-15=0\)
=>(x+5)(x-3)=0
=>\(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Thay x=-5 vào A, ta được:
\(A=\dfrac{8\cdot\left(-5\right)^2}{\left(-5-3\right)\left(-5+2\right)}=\dfrac{8\cdot25}{\left(-8\right)\cdot\left(-3\right)}=\dfrac{25}{3}\)
c: |A|>A
=>A<0
=>\(\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}< 0\)
=>(x-3)(x+2)<0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x>-2\end{matrix}\right.\)
=>-2<x<3
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}-2< x< 3\\x\notin\left\{0;2\right\}\end{matrix}\right.\)
tìm x biết
a. x^3-64=0
b. (2x-3)^2-(x+5)^2=0
c.(x^3-x^2)-4x^2+8x-4=0
a/ => x3 = 64 => x3 = 43 => x = 4
b/ => 4x2 - 12x + 9 - x2 - 10x - 25 = 0
=> 3x2 - 22x - 16 = 0
=> (x - 8)(3x + 2) = 0
=> x - 8 = 0 => x = 8
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
Vậy x = 8 ; x = -2/3
c/ => x3 - x2 - 4x2 + 8x - 4 = 0
=> x3 - 5x2 + 8x - 4 = 0
=> (x - 2)2 (x - 1) = 0
=> (x - 2)2 = 0 => x - 2 = 0 => x = 2
hoặc x - 1 = 0 => x = 1
Vậy x = 2 ; x = 1
5A. Tìm x, biết:
a) 8x(x - 2017) - 2x + 4034 = 0; b)
x + x2
2 8
= 0;
c) 4 - x = 2( x -4)2; d) (x2 + 1)(x - 2) + 2x = 4.
5B. Tìm x, biết:
a) x4 -16x2 =0; c) x8 + 36x4 =0;
b) (x - 5)3 - x + 5 = 0; d) 5(x - 2 ) - x2 + 4 = 0.
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Tìm x biết
a) 2x^2+3x-5=0
b)x^3+4x^2-9=0
c) x^4 +2x^2-8x+5=0
Nhanh nhất 3 tick nhé
a) 2x2+3x-5=0
=> 2x2+5x-2x-5=0
=> x(2x+5)-(2x-5)=0
=> (2x-5)(x-1)=0
=> 2x-5=0, x-1=0
=> x=5/2; 1
\(2x^2+3x-5=0< =>2x^2-2+3x-3=0\)
\(< =>2\left(x+1\right)\left(x-1\right)-3\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(2x-1\right)=0< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
tìm x: a)x^4-2x^3+5x^2-10x=0
b)(3x+5)^2=(2x-2)^2
. c)x^3–2x^2+x=0
. d)x^2(x-1)-4x^2+8x-4=0
\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)
\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)
Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)
b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy ...
d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: Ta có: \(x^4-2x^3+5x^2-10x=0\)
\(\Leftrightarrow x\left(x^3-2x^2+5x-10\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b:Ta có: \(\left(3x+5\right)^2=\left(2x-2\right)^2\)
\(\Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(3x+5-2x+2\right)\left(3x+5+2x-2\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Tìm x, biết:
a) 3.| 9 - 2x| - 17= 16
b) 3 - 4. |5 - 6x| =7
c) |9 - 7x|= 5x - 3
d) 8x - |4x + 1| = x + 2
e)|2x - 3| - ( 2x - 3) = 0
g)| 4- x| + ( 4 - x ) =0
a). 3. |9 - 2x| - 17 = 16
3. |9 - 2x| = 16 + 17
3. |9 - 2x| = 33
|9 - 2x| = 33 : 3
|9 - 2x| = 11
=> 9 - 2x = 11
2x = 9 - 11
2x = -2
x = - 2 : 2
x = - 1
hay 9 - 2x = - 11
2x = 9 - (- 11)
2x = 9 + 11
2x = 20
x = 20 : 2
x = 10
Vậy x = -1; x = 10
a) 3.| 9 - 2x | -17 = 16
3. | 9 - 2x | = 16 + 17 = 33
| 9 - 2x | = 33 : 3 = 11
\(\Rightarrow\)9 - 2x = 11 hoặc 9 - 2x = -11
2x = 9 - 11 2x = 9 - ( - 11 )
2x = -2 2x = 20
x = -2 : 2 x = 20 : 2
x = -1 x = 10
b). 3 - 4 |5 - 6x| = 7
4 |5 - 6x| = 3 - 7
4 |5 - 6x| = - 4
|5 - 6x| = - 4 : 4
|5 - 6x| = -1
Mà |5 - 6x| luôn lớn hơn 0 với mọi x
Do đó, x không tìm được giá trị
tìm x biết rằng a)8x^4/2x^3+3x^3/x^2=15 b)16x^3/8x^2+4x^2/2x
Tìm x, biết:
a) |2x+1| = |1-x|
b) |5x-4| = |x+2|
c) |2x-3| - |3x+2| =0
d) |2+3| = |4x-3|
e) |5/4-7/2| - |5/8x+3/5| =0
a) \(\left|2x+1\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=1-x\\2x+1=x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=0\\x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b) \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
c) \(\left|2x-3\right|-\left|3x+2\right|=0\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\5x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
d) \(\left|2+3\right|=\left|4x-3\right|\Leftrightarrow\left|4x-3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}4x-3=5\\4x-3=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=8\\4x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
e) \(\left|\frac{5}{4}-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\Leftrightarrow\left|\frac{5}{8}x+\frac{3}{5}\right|=\frac{9}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{3}{5}=\frac{9}{4}\\\frac{5}{8}x+\frac{3}{5}=-\frac{9}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{33}{20}\\\frac{5}{8}x=-\frac{57}{20}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{66}{25}\\x=-\frac{114}{25}\end{cases}}\)
\(\left|2x+1\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=-x+1\\2x+1=x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+x=-1+1\\2x-x=-1-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b. \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x-x=4+2\\5x+x=4-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
c. \(\left|2x-3\right|-\left|3x+2\right|=0\)
\(\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=3+2\\2x+3x=3-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\5x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
d, e tương tự