Một người đi xe đạp, đi nữa quãng đường đầu với vận tốc là 12km/h và nữa quãng đường còn lại với vận tốc 20km/h. Hãy xác định vận tốc trung bình của người đi xe đạp?
Bài tập 3: Một người đi xe đạp đi nửa quãng đường đầu với vận tốc 12 km/h và nửa quãng đường còn lại với vận tốc 20km/h. Hãy xác định vận tốc trung bình của người đi xe đạp trên cả quãng đường
Gọi nửa QĐ là S
vtb = 2s/(s/v1+s/v2) = 2/(1/12+1/20) = 15km/h
Một người đi xe đạp đã đi 4km với vận tốc 12km/h, sau đó người ấy dừng lại để chữa xe trong 40 phút rồi đi tiếp 8km nữa. Vận tốc trung bình của người đi xe đạp trên cả quãng đường là 6km/h. Tính vận tốc người đi xe đạp trên quãng đường cuối
Một người đi xe đạp trong nửa quảng đường đầu với v1=12km/h và nửa quãng đường còn lại với vận tốc v2=20km/h .vận tốc trung bình của người đó trên cả quãng đường là bao nhiêu
Thời gian đi nửa quãng đường đầu:
\(t_1=\dfrac{S_1}{v_1}=\dfrac{\dfrac{1}{2}S}{12}=\dfrac{S}{24}h\)
Thời gian đi nửa quãng đường sau:
\(t_2=\dfrac{S_2}{v_2}=\dfrac{\dfrac{1}{2}S}{20}=\dfrac{S}{40}h\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=15\)km/h
Thời gian đi quãng đường đầu và quãng đường sau là:
vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)
Một người đi xe đạp, đi nữa quãng đường đầu với vận tốc v 1 = 10km/h, nữa đoạn đường còn lại đi với vận tốc v 2. Biết vận tốc trung bình trên cả quãng đường là 8km/h. Tính vận tốc v 2 .
Ta có: \(v_{tb}=\dfrac{s}{\dfrac{\dfrac{1}{2}s}{v'}+\dfrac{\dfrac{1}{2}s}{v''}}=\dfrac{s}{\dfrac{s}{20}+\dfrac{s}{2v''}}=\dfrac{s}{\dfrac{s\left(2v''+20\right)}{40v''}}=\dfrac{40v''}{2v''+20}=8\)
\(=>v''=\dfrac{20}{3}\left(\dfrac{km}{h}\right)\)
một người đi xe đạp đi nửa quãng đường đầu đi với vận tốc 24 km/h và nửa quãng đường còn lại với vận tốc 40 km/h.Hãy xác định vận tốc trung bình của người đi xe đạp trên cả quãng đường ? Cứu mình với ! Cảm ơn nha !
\(v_{tb}=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{2s}{\dfrac{s_1}{v_1}+\dfrac{s_1}{v_2}}=\dfrac{2s}{s\left(\dfrac{1}{12}+\dfrac{1}{8}\right)}=\dfrac{2}{\dfrac{1}{12}+\dfrac{1}{8}}=9,6km/h\)
Một người đi xe đạp đi nửa quãng đường đầu với vận tốc v1 = 12km/h, nửa quãng đường còn lại đi với vận tốc v2 = 6km/h. Tính vận tốc trung bình của xe trên cả quãng đường?
\(v_{tb}=\dfrac{s}{\dfrac{\dfrac{1}{2}s}{v'}+\dfrac{\dfrac{1}{2}s}{v''}}=\dfrac{s}{\dfrac{s}{24}+\dfrac{s}{12}}=\dfrac{s}{\dfrac{3s}{24}}=\dfrac{24}{3}=8\left(\dfrac{km}{h}\right)\)
Một người đi xe đạp đi nửa quãng đường đầu, với vận tốc v1=20km/h, đi nửa quãng đường còn lại với vận tốc v2 không đổi. Biết các đoạn đường người ấy đi thẳng và vận tốc trung bình trên cả đoạn đường là 15km/h. Hãy tính vận tốc v2.
\(=>vtb=\dfrac{S}{\dfrac{\dfrac{1}{2}S}{v1}+\dfrac{\dfrac{1}{2}S}{v2}}=\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{2v2}}=\dfrac{S}{\dfrac{S\left(2v2+40\right)}{80v2}}=\dfrac{80v2}{2v2+40}=15\)
\(=>v2=12km/h\)
Một người đi xe đạp trong một nửa quãng đường đầu với tốc độ v1 = 12km/h và nửa quãng đường còn lại với tốc độ v2 = 20km/h. Tính vận tốc độ trung bình của người đó trên cả quãng đường ?
Thời gian đi quãng đường đầu và quãng đường sau là:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2v_1}=\dfrac{S}{24}\left(h\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}=\dfrac{S}{40}\left(h\right)\end{matrix}\right.\)
Vận tốc trung bình là: \(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=\dfrac{S}{S\left(\dfrac{1}{24}+\dfrac{1}{40}\right)}=15\left(\dfrac{km}{h}\right)\)
một người đi xe đạp đi nửa quãng đường đầu với vận tốc v1 = 12km/h, nửa còn lại đi với vận tốc v2 nào đó. Biết rằng vận tốc trung bình trên cả quãng đường là 8km/h. Hãy tính vận tốc v2
Gọi nửa quãng đường là S
\(t_1\) là thời gian đi hết nửa quãng đường đầu
\(t_1=\dfrac{s}{12}\)
\(t_2\) là thời gian đi hết nửa quãng đường sau
\(t_2=\dfrac{S}{v_2}\)
\(v_{tb}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{\dfrac{S}{12}+\dfrac{S}{v_2}}=8\)
\(\Leftrightarrow\dfrac{2S}{\dfrac{S\left(12+v_2\right)}{12v_2}}=8\Leftrightarrow\dfrac{24v_2}{12+v_2}=8\Rightarrow v_2=6\) km/h