Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngân PéPỳ
Xem chi tiết
Hoàng Hà Linh
Xem chi tiết
phạm văn tuấn
28 tháng 7 2018 lúc 10:57

\(A=2^{2017}-(2^{2016}+2^{2015}+......+2^1+2^0)\)

Đặt \(B=2^{2016}+2^{2015}+.....+2^1+2^0\)

\(\Rightarrow2B=2^{2017}+2^{2016}+....+2^1+2^0\)

\(\Rightarrow2B-B=(2^{2017}+2^{2016}+...+2^0)-(2^{2016}+2^{2015}+...+2^1+2^0)\)

\(\Rightarrow B=2^{2017}-2^0\)

\(\Rightarrow A=2^{2017}-(2^{2017}-1)\)

\(\Rightarrow A=1\)

Mai Hoàng Giang
28 tháng 7 2018 lúc 11:06

2A = 22018 - (22017 + 22016 + ....+ 21)

2A - A = [22018 - (22017 + 22016 + ....+ 21 )] - [22017 - (22016 + 22015 +..... + 2+ 20)

A = 22018  -  22017 - 22017 - 1 

A = 22018 - (22017 +22017 +1)

A = 22018 - (22018 +1 )

A = -1

nguyen viet anh
Xem chi tiết
Đinh Đức Hùng
12 tháng 11 2017 lúc 13:01

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

BUI THI HOANG DIEP
Xem chi tiết
Bùi Thế Hào
14 tháng 2 2017 lúc 14:40

Ta có: 1+(1+2)+(1+2+3)+...+(1+2+3+...+2017)=2017x1+2016x2+2015x3+...+2x2016+1x2017

=> K-2016=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017x1+2016x2+2015x3+...+2x2016+1x2017}\)=\(\frac{2017x1+2016x2+2015x3+...+2x2016+1x2017}{2017x1+2016x2+2015x3+...+2x2016+1x2017}=1\)

=> K=2016+1=2017

✓ ℍɠŞ_ŦƦùM $₦G ✓
14 tháng 2 2017 lúc 14:33

Toán tiếng anh hả bạn

Bài này thì bạn mình có thể giải được

Thank you

BUI THI HOANG DIEP
8 tháng 3 2017 lúc 18:03

At the speed of light không trả lời mà cũng được k

♡ ♡ ♡ ♡ ♡
Xem chi tiết
Trịnh Trân Trân
21 tháng 12 2016 lúc 10:20

mơn em iu nhìu nhắm nak.

Vampire Princess
Xem chi tiết
I don
1 tháng 5 2018 lúc 8:10

Bài 1:

ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

Bài 2:

ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Học tốt nhé bn !!

trần thị lan chi
Xem chi tiết
Hoàng Phúc
14 tháng 5 2016 lúc 13:41

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

Nguyễn Thế Bảo
14 tháng 5 2016 lúc 13:44

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi

Dương Đức Anh
Xem chi tiết
Nguyễn Tuấn Minh
2 tháng 3 2016 lúc 20:42

Tử số bằng mẫu số 

K-2016=1

K=2017

Muốn biết tại sao tử= mẫu thì tích nha

Vũ Lê Ngọc Liên
2 tháng 3 2016 lúc 20:42

\(K-2016=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)

\(K-2016=\frac{1\times2017+2\times2016+3\times2015+...+2017\times1}{2017\times1+2016\times2+2015\times3+...+2017\times1}\)

\(K-2016=1\)

\(\Rightarrow K=1+2016\)

\(\Rightarrow K=2017\)

Nguyễn thị thùy linh
2 tháng 3 2016 lúc 20:49

bài ra 2017

Trần Khởi My
Xem chi tiết
Trần Quốc Khanh
28 tháng 3 2020 lúc 20:15

\(\Leftrightarrow4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy M=1

Khách vãng lai đã xóa