tìm x biết \(\dfrac{1}{x}\)-\(\dfrac{1}{9999}\)=\(\dfrac{1}{\begin{matrix}1&\times&3\end{matrix}}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{97\times99}\)
Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.\)
\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)
Thay vào (1) ta được :
\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}
\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = 1/x ; b = 1/y
Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{4};-3\) )}
c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)
ĐK xác định : x≠0 ; y ≠0
Áp dụng quy tác cộng đại số ta có :
\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)
ĐK xác định : x≠0 ; y≠0
áp dụng quy tắc cộng đại số ta có :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)
Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}
e) ĐK xác định x≠0 ; y≠0
\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)
Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\dfrac{x}{35}-y=2\\y-\dfrac{x}{50}=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}\dfrac{x}{35}-y=2\\y-\dfrac{x}{50}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x-35y}{35}=2\\\dfrac{50y-x}{50}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-35y=70\\-x+50y=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15y=120\\x-35y=70\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=8\\x=70+35y=70+35\cdot8=350\end{matrix}\right.\)
b: ĐKXĐ: x<>0 và y<>0
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{y}=\dfrac{3}{16}-\dfrac{1}{4}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{2}{48}=\dfrac{1}{24}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\left(nhận\right)\)
giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y+z}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z+x}=\dfrac{1}{3}\\\dfrac{1}{z}+\dfrac{1}{x+y}=\dfrac{1}{4}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{y}{x}=\dfrac{5}{6}\\x^2-y^2=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x-7}}+\dfrac{3}{\sqrt{y+6}}=\dfrac{13}{6}\\\dfrac{7}{\sqrt{x-7}}-\dfrac{2}{\sqrt{y+6}}=\dfrac{5}{3}\end{matrix}\right.\)
Giải hpt
a)\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3}{y+1}=-1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y+12}-\dfrac{x}{y}=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}+\dfrac{xy}{x+y}=\dfrac{5}{2}\\\dfrac{x-y}{xy}+\dfrac{xy}{x-y}=\dfrac{10}{3}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{2x}{y-1}+\dfrac{3y}{x-1}=1\\\dfrac{2y}{x-1}-\dfrac{5x}{y-1}=2\end{matrix}\right.\)
a: ĐKXĐ: x<>-1 và y<>-1
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3}{y+1}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2x+2-2}{x+1}+\dfrac{y+1-1}{y+1}=2\\\dfrac{x+1-1}{x+1}+\dfrac{3}{y+1}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2-\dfrac{2}{x+1}+1-\dfrac{1}{y+1}=2\\1-\dfrac{1}{x+1}+\dfrac{3}{y+1}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{-2}{x+1}+\dfrac{-1}{y+1}=2-3=-1\\\dfrac{1}{x+1}-\dfrac{3}{y-1}=1+1=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{-2}{x+1}+\dfrac{-1}{y+1}=-1\\\dfrac{2}{x+1}-\dfrac{6}{y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{7}{y-1}=3\\\dfrac{1}{x+1}-\dfrac{3}{y-1}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y-1=-\dfrac{7}{3}\\\dfrac{1}{x+1}-3:\dfrac{-7}{3}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{4}{3}\\\dfrac{1}{x+1}+3\cdot\dfrac{3}{7}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{4}{3}\\\dfrac{1}{x+1}=2-\dfrac{9}{7}=\dfrac{5}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{4}{3}\\x+1=\dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{4}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\left(nhận\right)\)
b: ĐKXĐ: y<>0 và y<>-12
\(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y+12}-\dfrac{x}{y}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y}-\dfrac{x}{y+12}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\cdot\dfrac{x}{y+12}=3\left(vôlý\right)\\\dfrac{x}{y}-\dfrac{x}{y+12}=1\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\varnothing\)
d: ĐKXĐ: \(\left\{{}\begin{matrix}x< >1\\y< >1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x}{y-1}+\dfrac{3y}{x-1}=1\\\dfrac{2y}{x-1}-\dfrac{5x}{y-1}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2x}{y-1}+\dfrac{3y}{x-1}=1\\\dfrac{5x}{y-1}-\dfrac{2y}{x-1}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{4x}{y-1}+\dfrac{6y}{x-1}=2\\\dfrac{15x}{y-1}-\dfrac{6y}{x-1}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{19x}{y-1}=-4\\\dfrac{2x}{y-1}+\dfrac{3y}{x-1}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{y-1}=\dfrac{-19}{4}\\2\cdot\dfrac{-19}{4}+\dfrac{3y}{x-1}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x=-19\left(y-1\right)\\\dfrac{3y}{x-1}=1+\dfrac{19}{2}=\dfrac{21}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+19y=19\\\dfrac{y}{x-1}=\dfrac{7}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+19y=19\\7x-7=2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+19y=19\\7x-2y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8x+38y=38\\133x-38y=133\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}141x=171\\7x-2y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{171}{141}\\2y=7x-7=\dfrac{70}{47}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{171}{141}=\dfrac{57}{47}\\y=\dfrac{35}{47}\end{matrix}\right.\left(nhận\right)\)
\(\dfrac{1}{\begin{matrix}1\times&2\end{matrix}}+\dfrac{1}{\begin{matrix}2\times&3\end{matrix}}+\dfrac{1}{\begin{matrix}3\times&4\end{matrix}}+...........+\dfrac{1}{x\times\left(x+1\right)}=\dfrac{996}{997}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{996}{997}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)= \(\dfrac{996}{997}\) \(1-\dfrac{1}{x+1}\) = \(\dfrac{996}{997}\)
\(\dfrac{1}{x+1}\) = \(1-\dfrac{996}{997}\)
\(\dfrac{1}{x+1}\) =\(\dfrac{1}{997}\)
\(\Rightarrow\) x + 1 = 997
x = 997 - 1
x = 996
Vậy x = 996
\(\left\{{}\begin{matrix}x+2y=10\\\dfrac{1}{2}x-y=1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{1}{y}=2\\\dfrac{6}{x}-\dfrac{2}{y}=1\end{matrix}\right.\)
Câu a sử dụng pp thế
Câu b thì đặt \(\left\{{}\begin{matrix}u=\dfrac{1}{x}\\v=\dfrac{1}{y}\end{matrix}\right.\) ra được hệ mới, giải tìm u,v rồi tìm x,y
(1) giải hpt:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}^{ }\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
giúp mk vs ak
a, ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
Đặt \(\dfrac{1}{x}=a,\dfrac{1}{y}=b\)
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\left(tm\right)\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}-\dfrac{2y}{2}=\dfrac{2}{2}\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1-2y=2\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
(1) giải hpt:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
giúp mk vs ạ
a.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
\(ĐK:x;y\ne0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\)
hpt trở thành:
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\) ( tm )
Vậy nghiệm hpt: \(\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}+2x=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+4x}{2}=\dfrac{4}{2}\\2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
a.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
\(ĐK:x;y\ne0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\)
hpt trở thành:
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\) ( tm )
Vậy nghiệm hpt: \(\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}+2x=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+4x}{2}=\dfrac{4}{2}\\2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Tìm tất cả bộ ba số x,y,z thoả mãn:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1\\\dfrac{12}{yz}-\dfrac{1}{x^2}=1\end{matrix}\right.\)
$x,y,z$ có thêm điều kiện nguyên/ nguyên dương gì không bạn?