viết dưới dạng bình phương của một tổng hoặc 1 hiệu
-25-10x-x^2
viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu
25+10x+x^2
9-6x+x^2
x^2-x+1/4
các bạn trình bày đầy đủ nhé
viết các dạng biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu a.9av^2-6ab=1 b.25-10x+x^2 c.x^2+1/x^2-2 d.(x-y)^2-4(x-y)+4
\(a,9a^2-6ab=1\) ( kiểm tra lại đề giúp mk)
\(b,25-10x+x^2\)
\(=5^2-2.5.x+x^2\)
\(=\left(5-x\right)^2=\left(x-5\right)^2\)
c, cx kiểm tra và viết rõ đề hộ mk ak
\(d,\left(x-y\right)^2-4\left(x-y\right)+4\)
\(=\left(x-y\right)^2-2.\left(x-y\right).2+2^2\)
\(=\left(x-y-2\right)^2\)
c/ \(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=\left(x-\frac{1}{x}\right)^2\)
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc bình phương của một hiệu
a/9x2-12xy+4y2
b/25x2-10x+1
c/9x2-12x+4
d/4x2+20x+25
e/x4-4x2+4
help meeeeeeeee
a/ 9x2-12xy+4y2 = (3x - 2y)2
b/ 25x2-10x+1 = (5x - 1)2
c/ 9x2-12x+4 = (3x - 2)2
d/ 4x2+20x+25 = (2x + 5)2
e/ x4-4x2+4 = (x2 - 2)2
a/\(\left(3x-2y\right)^2\)
b/\(\left(5x-1\right)^2\)
c/\(\left(3x-2\right)^2\)
d/\(\left(2x+5\right)^2\)
e/\(\left(x-2\right)^2\)
để thằng này làm cho :
a/\(\left(3x\right)^2-12xy+\left(2y\right)^2\)
\(=\left(3x-2y\right)^2\)
B/làm cx tương tự
mấy câu kia cx z
Bài 2: Viết các biểu thức sau dưới dạng bình phương của một tổng, một hiệu hoặc lập phương của một tổng, một hiệu
1, x\(^2\)+2xy+y\(^2\)
2, 4x\(^2\)+12x+9
3, x\(^2\)+5x+\(\dfrac{25}{4}\)
4, 16x\(^2\)-8x+1
5, x\(^2\)+x+\(\dfrac{1}{4}\)
6, x\(^2\)-3x+\(\dfrac{9}{4}\)
7, x\(^3\)+3x\(^2\)+3x+1
8,(\(\dfrac{x}{4}\))\(^2\)+x+1
9, 27y\(^3\)-9y\(^2\)+y-\(\dfrac{1}{27}\)
10, 8x\(^3\)+12x\(^2\)y+6xy\(^2\)+y\(^3\)
1, \(x^2+2xy+y^2=\left(x+y\right)^2\)
2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)
5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
1: =(x+y)^2
2: =(2x+3)^2
3: =(x+5/2)^2
4: =(4x-1)^2
5: =(x+1/2)^2
6: =(x-3/2)^2
7: =(x+1)^3
8: =(1/2x+1)^2
9: =(3y-1/3)^3
10: =(2x+y)^3
6, \(x^2-3x+\dfrac{9}{4}=x^2-2\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2=\left(x-\dfrac{3}{2}\right)^2\)
7, \(x^3+3x^2+3x+1=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x+1\right)^3\)
8, \(\dfrac{x^2}{4}+x+1=\left(\dfrac{x}{2}\right)^2+2\cdot\dfrac{x}{2}\cdot1+1^2=\left(\dfrac{x}{2}+1\right)^2\)
9, \(27y^3-9y^2+y-\dfrac{1}{27}=\left(3y\right)^3-3\cdot\left(3y\right)^2\cdot\dfrac{1}{3}+3\cdot3y\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3=\left(3y-\dfrac{1}{3}\right)^3\)
10, \(8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3=\left(2x+y\right)^3\)
Viết các biểu thức sau dưới dạng bình phương của một tổng hay hiệu:
a) 6xy^3+x^2y^6+9
b) x^4-2x^2y+y^2
c) x^6+25-10x^3
a) 6xy^3+x^2y^6+9
= (xy^3 + 3)^2
b) x^4-2x^2y+y^2
= (x^2 - y)^2
c) x^6+25-10x^3
= (x^3 - 5)^2
a/ 6xy3+x2y6+9
= (xy3+3)2 bình phương của 1 tổng;cttq: (A+B)2
b/ x4-2x2y+y2
= (x2-y)2 bình phương của 1 hiệu; cttq (A-B)2
c/ x6+25-10x3
=(x3-5)2
Viết các đa thức dưới sau dưới dạng bình phương của một tổng hoặc một hiệu
a) x^2 + 6x + 9
b) 25 + 10x + x^2
c) x^2 + 8x + 16
d) x^2 + 14x + 49
e) 4x^2 + 12x + 9
f) 9x^2 + 12x + 4
h) 16x^2 + 8x + 1
i) 4x^2 + 12xy + 9y^2
k) 25x^2 + 20xy + 4y^2
a. x2 + 6x + 9 = (x + 3)2
b. 25 + 10x + x2 = (5 + x)2
c. x2 + 8x + 16 = (x + 4)2
d. x2 + 14x + 49 = (x + 7)2
e. 4x2 + 12x + 9 = (2x + 3)2
f. 9x2 + 12x + 4 = (3x + 2)2
h. 16x2 + 8 + 1 = (4x + 1)2
i. 4x2 + 12xy + 9y2 = (2x + 3y)2
k. 25x2 + 20xy + 4y2 = (5x + 2y)2
a) \(=\left(x+3\right)^2\)
b) \(=\left(x+5\right)^2\)
c) \(=\left(x+4\right)^2\)
d) \(=\left(x+7\right)^2\)
e) \(=\left(2x+3\right)^2\)
f) \(=\left(3x+2\right)^2\)
h) \(=\left(4x+1\right)^2\)
i) \(=\left(2x+3y\right)^2\)
k) \(=\left(5x+2y\right)^2\)
viết các đa thức sau dưới dạng bình phương 1 tổng hoặc 1 hiệu:
a; x^2+4x=4
b;x^2+6x+9
c;x^2-8x+16
d;x^2-10x+25
Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu: x^2-x+1/4
\(x^2-x+\frac{1}{4}\)
\(=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{1}{2}\right)^2\)