Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vũ Thiên Nghi
Xem chi tiết
Nguyễn Vũ Thiên Nghi
12 tháng 10 2020 lúc 21:06

à tui nhầm, không phải tìm TXĐ mà là gtln, gtnn của hàm số

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 21:40

\(y=2\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)=2sin\left(2x-\frac{\pi}{6}\right)\)

Do \(-1\le sin\left(2x-\frac{\pi}{6}\right)\le1\Rightarrow-2\le y\le2\)

\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{6}\right)=-1\)

\(y_{max}=2\) khi \(sin\left(2x-\frac{\pi}{6}\right)=1\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 20:24

ĐKXĐ:

a. \(x-1\ge0\Rightarrow x\ge1\)

b. \(\left\{{}\begin{matrix}cosx\ne0\\cos2x+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\2x\ne\pi+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)

c.

\(cosx\ge0\Rightarrow-\dfrac{\pi}{2}+k2\pi\le x\le\dfrac{\pi}{2}+k2\pi\)

Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 16:15

a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)

\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)

=>\(-\sqrt{2}< =y< =\sqrt{2}\)

\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1

=>x+pi/4=-pi/2+k2pi

=>x=-3/4pi+k2pi

\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1

=>x+pi/4=pi/2+k2pi

=>x=pi/4+k2pi

b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)

\(=sin\left(x+\dfrac{pi}{3}\right)+3\)

-1<=sin(x+pi/3)<=1

=>-1+3<=sin(x+pi/3)+3<=4

=>2<=y<=4

y min=2 khi sin(x+pi/3)=-1

=>x+pi/3=-pi/2+k2pi

=>x=-5/6pi+k2pi

y max=4 khi sin(x+pi/3)=1

=>x+pi/3=pi/2+k2pi

=>x=pi/6+k2pi

c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)

\(=2sin\left(2x-\dfrac{pi}{6}\right)\)

-1<=sin(2x-pi/6)<=1

=>-2<=y<=2

y min=-2 khi sin(2x-pi/6)=-1

=>2x-pi/6=-pi/2+k2pi

=>2x=-1/3pi+k2pi

=>x=-1/6pi+kpi

y max=2 khi sin(2x-pi/6)=1

=>2x-pi/6=pi/2+k2pi

=>2x=2/3pi+k2pi

=>x=1/3pi+kpi

Bay Ngoc
Xem chi tiết
Nguyễn Ngọc Minh Long
4 tháng 7 2017 lúc 21:21

a/ Điều kiện: 1 - sin2x \(\ne\) 0
<=> sin2x \(\ne1\)
<=> \(x\ne\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)
TXĐ: D = R\ {\(\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)}

Phạm Ngọc Thảo Vân
6 tháng 7 2017 lúc 19:24

b. ĐKXĐ cos(4x+\(\dfrac{\pi}{3}\)) \(\ne\)0 => 4x+\(\dfrac{\pi}{3}\)= \(\dfrac{\pi}{2}\)+k\(\pi\) => x=\(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z

==> TXĐ: D= R\ { \(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z }

Phạm Ngọc Thảo Vân
6 tháng 7 2017 lúc 19:29

c. ĐKXĐ : 1+ sin2x \(\ne\) 0 => sin2x \(\ne\) -1 => 2x= -\(\dfrac{\pi}{2}\)+k2\(\pi\)

=> x= -\(\dfrac{\pi}{4}\)+k\(\pi\)

TXĐ : D = R \ { -\(\dfrac{\pi}{4}\)+k\(\pi\) }

Mai Thanh Thái Hưng
Xem chi tiết
I don
8 tháng 5 2022 lúc 15:39

\(Vì-1\le\cos2x\le1\)

\(\Rightarrow2\le3+\cos2x\le4\)

\(\Rightarrow\sqrt{2}\le\sqrt{3+\cos2x}\le\sqrt{4}\)

\(\Rightarrow\sqrt{2}\le\sqrt{3+\cos2x}\le2\)

\(\Rightarrow\sqrt{2}\le y\le2\)

\(Vậy\) \(y_{max}=2\)

       \(y_{min}=\sqrt{2}\)

Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2021 lúc 21:50

\(y^2=sin2x+cos2x+2\sqrt{sin2x.cos2x}\)

Đặt \(sin2x+cos2x=t\Rightarrow t\in\left[1;\dfrac{1+\sqrt{3}}{2}\right]\)

\(sin2x.cos2x=\dfrac{t^2-1}{2}\)

\(y^2=f\left(t\right)=t+\sqrt{2\left(t^2-1\right)}\)

\(f'\left(t\right)=1+\dfrac{2t}{\sqrt{2\left(t^2-1\right)}}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow y^2\le f\left(\dfrac{1+\sqrt{3}}{2}\right)=\dfrac{\left(1+\sqrt[4]{3}\right)^2}{2}\)

\(\Rightarrow y\le\dfrac{1+\sqrt[4]{3}}{\sqrt{2}}\)

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2021 lúc 21:11

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

oooloo
Xem chi tiết