Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Nguyễn

24. Tìm GTLN của hàm số: \(y=3\cos\left(x-\dfrac{\pi}{2}\right)+1\)

26. a) Tìm GTLN của hàm số: \(y=\cos2x+\sin2x\)

b) Giải PT: \(\sin x+\sqrt{3}\cos x=1\)

Nguyễn Việt Lâm
16 tháng 7 2021 lúc 21:11

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)


Các câu hỏi tương tự
ha:rt the hanoi
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
myyyy
Xem chi tiết
Lê Thị ánh Nguyệt
Xem chi tiết
Nhi Hoàng
Xem chi tiết
myyyy
Xem chi tiết
myyyy
Xem chi tiết