Cho a,b,c\(\ge\)0
Ta có \(\sqrt{a-b+c}\)=\(\sqrt{a}\)-\(\sqrt{b}\)-\(\sqrt{c}\)
Tím a,b,c
a)Cho a,b,c \(\ge\)0, a+b+c\(\le\)1.Chứng minh rằng:\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
b)Cho a,b,c \(\ge\)0, a+b+c\(\le\)6.Chứng minh rằng: \(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\le6\)
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)
\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)
\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)
\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)
\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)
Xảy ra khi \(a=b=c=2\)
cho a,b,c>0 ; abc=2.CMR
\(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
Do vai trò của 3 biến là như nhau, ko mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow\) Theo BĐT Chebyshev:
\(3\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (1)
Bunhiacopxki:
\(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a^2+b^2+c^2\right)\left(a+b+c\right)\le6\left(a^3+b^3+c^3\right)\)
Nên ta chỉ cần chứng minh:
\(\left(a^3+b^3+c^3\right)^2\ge6\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3\ge6\)
Hiển nhiên đúng do: \(a^3+b^3+c^3\ge3abc=6\)
Cho a,b,c>0 và abc=1
cmr: \(\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3
\)
bđt cần c/m tương đương với:
\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
Mặt khác:
\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Ta cần c/m:
\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)
xong rồi bạn nhé
b1 cho a,b>0 cmr
a) \(a+b\ge2\sqrt{a}.\sqrt{b}\)
b)\(a+b+c\ge\sqrt{a}.\sqrt{b}+\sqrt{a}.\sqrt{c}+\sqrt{b}.\sqrt{c}\)
a) \(a+b\ge2\sqrt{a}\cdot\sqrt{b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
b) \(a+b+c\ge\sqrt{a}\cdot\sqrt{b}+\sqrt{a}\cdot\sqrt{c}+\sqrt{b}\cdot\sqrt{c}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{a}\cdot\sqrt{b}-2\sqrt{a}\cdot\sqrt{c}-2\sqrt{b}\cdot\sqrt{c}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
a)
\(a+b\ge2\sqrt{a}.\sqrt{b}\)
\(\Leftrightarrow\) \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\) \(a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\) \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( vì a, b > 0) luôn đúng
=> Bất đẳng thức đã cho luôn đúng với ∀ a, b dương (đpcm)
Cho a b c > 0 cmr \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{a+b+c}\)
BĐT CẦN CM <=> \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge a+b+c\)
<=> \(a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge a+b+c\)
<=> \(2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge0\)
<=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge0\)
THỰC TẾ LÀ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}>0\) nhé do \(a;b;c>0\) mà !!!!!!
Bình phương 2 vế BĐT , ta có :
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge a+b+c\)
\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\ge a+b+c\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}>0\left(\forall a,b,c>0\right)\)
=) ĐPCM
Cho a,b,c >0 và abc= 1.CMR:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Giúp với , cần gấp
Áp dụng BĐT Cô - si cho 2 số không âm, ta có:
\(VT=\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\text{Σ}_{cyc}\sqrt{\frac{bc}{a}}\right)\)
\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)
\(+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)
\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}=2\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)\)
\(=\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)+\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)
\(\ge2\sqrt{\sqrt{\frac{bc}{a}}\sqrt{\frac{ca}{b}}}+2\sqrt{\sqrt{\frac{ca}{b}}\sqrt{\frac{ab}{c}}}+2\sqrt{\sqrt{\frac{ab}{c}}\sqrt{\frac{bc}{a}}}\)
\(=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{a}\sqrt{b}\sqrt{c}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
cho a,b,c\(\ge\)0; a+b+c=1. Chứng minh \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Áp dụng BĐT Bunhiacopxki, ta có :
\((\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=3.2=6\)
\(\Leftrightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Dấu "=" xảy ra khi và chỉ khi a+b=b+c=c+a => a=b=c =1/3
cho a,b,c\(\ge\)0. a+b+c=1. cm
a)\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3.5\)
b)\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
cho a,b,c thỏa \(\left\{{}\begin{matrix}a,b,c>0\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\end{matrix}\right.\) chứng minh rằng\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{\sqrt{c}}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
Ta có: \(\sqrt{a+bc}=\sqrt{\dfrac{a^2+abc}{a}}=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\)
thiết lập tương tự ,bất đẳng thức cần chứng minh tương đương:
\(\Leftrightarrow\sum\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(\Leftrightarrow\sum\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Leftrightarrow\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\sum a\sqrt{bc}\)
Điều này luôn đúng theo BĐT Bunyakovsky:
\(\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\sum\left(bc+a\sqrt{bc}\right)=abc+\sum a\sqrt{bc}\)
Dấu = xảy ra khi a=b=c=3