CMR : (x-y-z)^2 = x^2 + y^2 +z^2 - 2xy +2yz-2xz
cmr: x^2 + y^2 + z^2>= 2xy - 2xz + 2yz
cho x,y,z dương và x+y+z=1 CMR:1/x^2+2yz + 1/y^2 +2xz + 1/z^2+2xy > hoặc = 9
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
CMR
( x + y + z )2 = x2 + y2 +z2 +2xy +2yz + 2xz
Ta có:
\(\left(x+y+z\right)^2\)
\(=\left[\left(x+y\right)+z\right]^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2\)
\(=x^2+y^2+z^2+2xy+2xz+2yz\)
cho x,y,z dương và x+y+z=1.cmr \(_{\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9}\)
Cauchy - Schwarz dạng Engel :
\(\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2zx}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}=9\)
Đẳng thức xảy ra <=> x = y = z = 1/3
Rút gọn phân thức x^2+y^2+z^2-2xy+2xz-2yz/x^2-2xy+y^2-z^2
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
Cho x, y, z > 0 thỏa x + y + z = 1
Cmr: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
áp dụng bđt bunhia dạng phân thức ta có
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)≥\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9
(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)
CMR : Biểu thức sau đây không âm
\(x^2y^2+y^2z^2+z^2x^2-x^2yz-y^2xz-z^2xy\)
Áp dụng bđt AM-GM:
\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)
\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^{^4}}=2xyz^2\)
\(x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)
Cộng theo vế và rút gọn: \(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\ge0\left(đpcm\right)\)
\(\left(xy-yz\right)^2=x^2y^2-2xy^2z+y^2z^2\ge0\)
\(\Rightarrow x^2y^2+y^2z^2\ge2xy^2z\)
Thiết lập hai BĐT còn tại tương tự và cộng theo vế và chia cho 2:
\(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+y^2xz+z^2xy\)
Chuyển vế ta có đpcm.
Dấu "=" xảy ra khi \(xy=yz=zx\Leftrightarrow x=y=z\)
Nó dạng kiểu kiểu \(a^2+b^2+c^2-ab-bc-ca\) ấy
Bạn phân tích thành:
\(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\right]\ge0\)
Cho x,y,z nguyên dương và x+y+z=1
CMR \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
Áp dụng bđt Svac ta có:
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)
chứng minh(x-y-z)^2=x^2+y^2+z^2-2xy+2xz+2yz