1/3.5+1/5.7+....+1/99.101
1/3.5+1/5.7+......+1/99.101
Đặt B = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(\Rightarrow2B=\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(\Rightarrow2B=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+...+\frac{101}{99.101}-\frac{99}{99.101}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{101}\)
\(\Rightarrow2B=\frac{98}{303}\)
\(\Rightarrow B=\frac{98}{303}\div2=\frac{49}{303}\)
\(\frac{1}{3.5}=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)\)
\(\frac{1}{5.7}=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)\)
\(⋮\)
\(\frac{1}{99.101}=\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
= \(\frac{1}{2}.\frac{98}{303}\)
= \(\frac{49}{303}\)
=> \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=\frac{49}{303}\)
A = 1/1.3 - 1/3.5 - 1/5.7 - ... - 1/99.101
\(=\dfrac{1}{3}-\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{2}\cdot\dfrac{98}{303}=\dfrac{1}{3}-\dfrac{49}{303}=\dfrac{101-49}{303}=\dfrac{52}{303}\)
1/3.5+1/5.7+1/7.9+...+1/99.101=?
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{303}\)
\(=\frac{49}{303}\)
1/1.3+1/3.5+1/5.7+.........+1/99.101
Đặt A=1/1*3+1/3*5+..+1/99*101
A=2/2*(1/1*3+1/3*5+...+1/99*101)
A=1/2*(2/1*3+2/3*5+..+2/99*101)
A=1/2*(1/1-1/3+1/3-1/5+...+1/99-1/100)
A=1/2*(1/1-1/100)
A=1/2*99/100
A=99/200
50/101 nha
Ai chưa có người yêu thì k và kết bạn với mình nhé
\(\frac{1}{1\cdot3}\)+ ... +\(\frac{1}{99\cdot101}\)
2 lần cái này bằng \(\frac{2}{1\cdot3}\)+\(\frac{2}{99\cdot101}\)
= 1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100
=1-1/100
=> cái này bằng 1-1/100 chia 2 = 99/200
Nên nhớ, tao đang học lớp 6 đấy nhé.
1/1.3+1/3.5+1/5.7+...+1/99.101
A=1/1x3+1/3x5+1/5x7+...+1/99x101
gấp cả 2 vế lên 2 lần ta có:
Ax2=2/1x3+2/3x5+2/5x7+...+2/99x101
Ax2=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
Ax2=1-1/101
Ax2=100/101
A=100/101:2=50/101
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Chúc bạn học tốt nha !!!
Tính 1/1.3+1/3.5+1/5.7+...1/99.101
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101
= 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)
= 1/2.(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101)
= 1/2.(1 - 1/101)
= 1/2.100/101
= 50/101
\(\text{Đặt : }A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow2A=1-\frac{1}{101}\)
\(\Rightarrow A=\frac{100}{101}:2=\frac{50}{101}\)
A=1/1.3+1/3.5+1/5.7+....+1/99.101
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:2=\frac{100}{101}\times\frac{1}{2}=\frac{50}{101}\)
1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 +...+ 1/99.101
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{303}\)
\(=\frac{49}{303}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{101}=\frac{49}{101}\)
Hình như Nguyễn Hữu Thế trừ sai.
1/3 - 1/101 = 98/303
\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + .... + \(\dfrac{1}{99.101}\)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{50}{101}\)