tìm giá trị lớn nhất của x+1/(x+2)^2
giúp mình ạ
tìm giá trị nhỏ nhất của biểu thức
A=x/y + y/x + xy/x^2+y^2
giúp mình
Bổ sung điều kiện: \(x,y>0\)
\(A=\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{xy}{x^2+y^2}\\ A=\dfrac{8}{9}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x^2+y^2}{9xy}+\dfrac{xy}{x^2+y^2}\right)\)
Áp dụng BĐT cosi:
\(A\ge\dfrac{8}{9}\cdot2\sqrt{\dfrac{xy}{xy}}+2\sqrt{\dfrac{xy\left(x^2+y^2\right)}{9xy\left(x^2+y^2\right)}}=\dfrac{16}{9}+\dfrac{2}{3}=\dfrac{22}{9}\)
Vậy \(A_{min}=\dfrac{22}{9}\Leftrightarrow x=y\)
Tính giá trị của biểu thức A=(3x+5).(2x-1)+(4x-1)(3x+2) tại |x|=2
Giúp mình với ạ
Đầy tiên ta đi rút gọn biểu thức.
Có : $A = (3x+5).(2x-1) + (4x-1).(3x+2)$
$ = 6x^2 + 7x - 5 + 12x^2 + 5x - 2$
$ = 18x^2 + 12x-7$
Vì $|x| = 2$ nên $x = 2$ hoặc $x=-2$
Với $x=2$ ta có : $A = 18.2^2 + 12.2-7 = 89$
Với $x=-2$ ta có : $A = 18.(-2)^2 + 12.(-2) - 7 = 41$
Tìm giá trị nhỏ nhất của các biểu thức sau :
C=|x-1|+|x-5|
Tìm giá trị lớn nhất .....
a) C=3-|2x-5| b / D= 1 / 2|x-1|+3
Giúp mình với mình đang cần gấp cảm ơn ạ!
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Cho biểu thức:
M=(-3/7.x^3.y).7xy^3/12-x^2.y^2.(-3/4.x^2.y^2)
a) Thu gọn biểu thức M
b) Xác định phần hệ số, phần biến và bậc của M
c)Tìm giá trị của M khi x=-1 và y=-2
Giúp mình với ạ mình cần gấp lắm
a: \(M=\left(\dfrac{-3}{7}x^3y\right)\cdot\dfrac{7xy^3}{12}-x^2y^2\cdot\left(-\dfrac{3}{4}x^2y^2\right)\)
\(=\dfrac{-1}{4}x^4y^4+\dfrac{3}{4}x^4y^4\)
\(=\dfrac{1}{2}x^4y^4\)
b: Hệ số là 1/2
Biến là \(x^4;y^4\)
bậc là 4+4=8
c: Thay x=-1 và y=-2 vào M, ta được:
\(M=\dfrac{1}{2}\left(-1\right)^4\cdot\left(-2\right)^4=\dfrac{1}{2}\cdot16=8\)
)
(a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức A và tìm giá trị lớn nhất của A
Giúp mình với ạ mình đang cần gấp
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức. Giúp mình lẹ với ạ mình cảm ơn.
P=\(\sqrt{x-2}+3\sqrt{4-x}\)
Đk: \(2\le x\le4\)
Áp dụng BĐT bunhiacopxki có:
\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)
\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)
Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)
Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)
Dấu "=" xảy ra khi x=4 (tm)
Giúp mình với ạ
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức M = 3√x−1 + 4√5 − x với mọi x thỏa mãn 1≤ x ≤ 5
Bài 2 : Cho A = [(3x - 2)(x + 1) - (2x + 5)(x2 - 1)]:(x + 1) Tính giá trị của A khi x = 1 2
Giúp Mình Với Mình Cần Gấp
Mk xin phép ko vt lại đề nx
\(\Rightarrow A=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]\div x+1\)
\(\Rightarrow A=3x-2-\left(2x-5\right)\left(x-1\right)\)
\(\Rightarrow x=\dfrac{1}{2}\)
\(\Rightarrow A=\dfrac{3}{2}-2-\left(1-5\right)\left(\dfrac{1}{2}-1\right)=-\dfrac{5}{2}\)
Cho x,y là 2 số thực thỏa mãn x2+xy2+2xy+3x+3y-4=0
Tìm giá trị lớn nhất, giá trị nhỏ nhất của P=x+y
Mọi người giúp mình nha, mình cần gấp ạ