Chứng minh:
(a-1)(a-2)(1+a+a^2)(4+2a+a^2)=a^6-9a^3+8
Chứng minh: \(\left(a-1\right)\left(a-2\right)\left(1+a+a^2\right)\left(4+2a+a^2\right)=a^6-9a^3+8\)
\(VT=\left(a-1\right)\left(a^2+a+1\right)\left(a-2\right)\left(a^2+2a+4\right)\)
\(=\left(a^3-1\right)\left(a^3-8\right)\)
\(=a^6-9a^3+8\)
2.b)4√8-√18-6√1/2-√200
3.a)(a√6/a+√2a/3+√6a):√6a (a>0)
b)2/3a-1*√3a^2(9a^2-6a+1) (1/3>a>0)
2b: \(=8\sqrt{2}-3\sqrt{2}-3\sqrt{2}-10\sqrt{2}=-8\sqrt{2}\)
3:
a: \(=\left(\sqrt{6a}+\dfrac{\sqrt{6a}}{3}+\sqrt{6a}\right):\sqrt{6a}\)
=1+1/3+1
=7/3
b: \(=\dfrac{2}{3a-1}\cdot\sqrt{3}\cdot a\cdot\left|3a-1\right|\)
\(=\dfrac{2\sqrt{3}\cdot a\left(1-3a\right)}{3a-1}=-2a\sqrt{3}\)
b1 )
cho a = 1+ 2\(^1\) + 2\(^2\) + 2\(^3\)\(^{ }\) +......+ 2\(^{2007}\)
a) tính 2a
b) chứng minh : a= 2\(^{2006}\) - 1
b2 )
cho a = 1+3+3\(^2\) +3\(^3\) +3\(^4\) +3\(^5\) + 3\(^6\) + 3\(^7\)
a) tính 2a
b) chứng minh : a= ( 3\(^8\) - 1 ) : 2
giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!
Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)
chứng minh a=-3,5 giá trị biểu thức A=(a+3) (9a-8)-(2a+a) (9a-1) bằng -29
Ta chỉ cần thay a= -3.5 vào biểu thức và nếu nó bằng - 29 thì ta sẽ có đpcm
1/Rút gọn biểu thức:
A=(m-n)(m^2+mn+n^2)-(m+n)(m^2-mn+n^2)
2/Chững minh
(a-1)(a-2)(1+a+a^2)(4+2a+a^2)=a^6-9a^3+8
3/ Tìm x biết
(x+2)(x^2-2x+4)-x(x-3)(x+3)=26
Bài 2:
\(VT=\left(a-2\right)\left(a^2+2a+4\right)\left(a-1\right)\left(a^2+a+1\right)\)
\(=\left(a^3-8\right)\left(a^3-1\right)\)
\(=a^6-9a^3+8\)
Bài 3:
\(\Leftrightarrow x^3+8-x\left(x^2-9\right)=26\)
\(\Leftrightarrow x^3+8-x^3+9x=26\)
=>9x=18
hay x=2
Chứng minh rằng:
(a-1)(a-2)(1+a+a2)=a6 -9a3+8
\(\left(a-1\right)\left(a-2\right)\left(1+a+a^2\right)\)
\(=\left(a^2-3a+2\right)\left(1+a+a^2\right)\)
\(=a^2+a+a^4-3a-3a^2-3a^3+2+2a+2a^2\)
\(=a^4-3a^3+2\)
Có sai không nhỉ?!
cm : (a+1)(a-2)(1+a+a^2)(5+2a+a^2)= a^6 -9a^3 +8
nhanh nhanh hộ em nha
ai đầu tick
Trả lời:
Bn tham khỏa xem trong này nha:
https://h.vn/hoi-dap/question/384525.html
Nhớ t i c k nha
~HT~
Cho a >b . Chứng minh : a)4a – 3 > 4b – 3; b) 1 – 2a < 1- 2b ; c) 5( a+ 3) - 4 > 5( b + 3) – 4; d)5 – 2a < 5 – 2b e) – 2 (1 – a) – 6 > -2 (1 – b ) – 6
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
a,b,c>0: a+b+c=3. Chứng minh:
\(a^2b+b^2c+c^2a>=\frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
lớn hơn hay = thế ạ
Ta có :
\(a^2b+b^2c+c^2a\ge\frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)\left(1+2a^2b^2c^2\right)\ge9a^2b^2c^2\)
\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^{3v}+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)(*)
Áp dụng BĐT AM-GM ta có:
\(a^2b+a^4b^3c^2+a^3b^2c^4\ge3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)
\(b^2c+a^2b^4c^3+a^4b^3c^2\ge3a^2b^3c^2\)
\(c^2a+a^3b^2c^4+a^2b^4c^4\ge3a^2b^2c^3\)
Cộng theo vế
\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)
Vậy $(*)$ đúng
Do đó ta có đpcm
#Cừu
~
p/s: lần sau ghi nguồn
# https://h7.net/hoi-dap/toan-9/chung-minh-a-2b-b-2c-c-2a-9a-2b-2c-2-1-2a-2b-2c-2--faq362074.html