\(VT=\left(a-1\right)\left(a^2+a+1\right)\left(a-2\right)\left(a^2+2a+4\right)\)
\(=\left(a^3-1\right)\left(a^3-8\right)\)
\(=a^6-9a^3+8\)
\(VT=\left(a-1\right)\left(a^2+a+1\right)\left(a-2\right)\left(a^2+2a+4\right)\)
\(=\left(a^3-1\right)\left(a^3-8\right)\)
\(=a^6-9a^3+8\)
Chứng minh rằng :
a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=2a^3\)
b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
c) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Rút gọn các biểu thức sau :
a) \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3-x^3-3x\left(x+1\right)\left(x-1\right)\)
c) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
d) \(100^2-99^2+98^2+97^2+......+2^2-1^2\)
e) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)+...+\left(2^{64}+1\right)+1\)
f) \(\left(a+b+c\right)^{^{ }2}+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
1. Rút gọn các biểu thức sau:
a) \(\left(x+y\right)^2-\left(x-y\right)^2\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
c) \(9^8\times2^8-\left(18^4-1\right)\left(18^4+1\right)\)
Rút gọn
a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)
b) \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{18}+1\right)\left(3^{32}+1\right)\)
c) \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
d) \(D=\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-b-a\right)^2\)
e)\(E=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)
1) Tìm x biết,
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
2) Rút gọn các biểu thức
a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
c) \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
d) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
e) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
3) Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến
a) \(9x^2-6x+2\)
b) \(x^2+x+1\)
c) \(2x^2+2x+1\)
4) Tìm GTNN của các biểu thức
a) A=\(x^2-3x+5\)
b) B=\(\left(2x-1\right)^2+\left(x+2\right)^2\)
GIÚP MK VỚI!!!!!!!!!!
Chứng minh các đẳng thức sau:
a) \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2=4\left(a^2+b^2+c^2\right)\)
b) \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3-\left(a+b-c\right)^3=24abc\)
Chứng minh các đẳng thức sau
a) \(\left(2x+3\right)\left(4x^2+9\right)\left(2x-3\right)=16x^4-81\)
b) \(\left(a+b\right)^2+2\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2=4a^2\)
Chứng minh nếu \(x^2=b^2+c^2;y^2=c^2+a^2;z^2=a^2+b^2\)thì \(\left(x+y+z\right)\left(-x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
rút gọn biểu thức
a, \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
b , \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)