Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Chứng minh rằng :

a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=2a^3\)

b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

c) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

T.Thùy Ninh
6 tháng 6 2017 lúc 11:01

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)

\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)

\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)

Mai Phạm Phương
18 tháng 8 2017 lúc 18:11

a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)

= a3+b3+a3-b3 = 2a3

b) a3+b3

= (a+b)(a2-ab+b2)

= (a+b)(a2- 2ab+b2)+ab

= (a+b)(a2-b2)+ab

obito
12 tháng 10 2017 lúc 21:54

a. Biến đổi vế trái:

(a+b)(a2−ab+b2)+(a−b)(a2+ab+b2)=a3+b3+a3−b3=2a3

=>VT bằng VP (đpcm)

b. Biến đổi vế phải:

(a+b)[(a−b)2+ab]=(a+b)[a2−2ab+b2+ab]

=(a+b)(a2−ab+b2)=a3+b3

=>VP bằng VT (đpcm)

c. Biến đổi vế phải:

(ac+bd)2+(ad−bc)2=a2c2+2abcd+b2d2+a2d2−2abcd+b2c2

=a2c2+b2d2+a2d2+b2c2=c(a2+b2)+d2(a2+b2)=(a2+b2)(c2+d2)

=>VP bằng VT (đpcm)



Các câu hỏi tương tự
Thiên sứ của tình yêu
Xem chi tiết
Quỳnh Như
Xem chi tiết
amime Nguyễn
Xem chi tiết
Linh Lê
Xem chi tiết
Kotori Minami
Xem chi tiết
Hải Dương
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Loveduda
Xem chi tiết
harumi05
Xem chi tiết