Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thế minh
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
Kinder
Xem chi tiết
Hồng Phúc
31 tháng 5 2021 lúc 23:41

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

yuki
Xem chi tiết
Hồng Phúc
24 tháng 8 2021 lúc 14:46

1.

\(8sinx=\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\)

\(\Leftrightarrow4sinx=\dfrac{\sqrt{3}}{2cosx}+\dfrac{1}{2sinx}\)

\(\Leftrightarrow4sinx=\dfrac{\sqrt{3}sinx+cosx}{sin2x}\)

\(\Leftrightarrow4sinx.sin2x=\sqrt{3}sinx+cosx\)

\(\Leftrightarrow2cosx-2cos3x=\sqrt{3}sinx+cosx\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=2cos3x\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos3x\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=\pm3x+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}-k\pi\\x=-\dfrac{\pi}{12}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Hồng Phúc
24 tháng 8 2021 lúc 15:00

2.

ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\)

\(sinx+\sqrt{3}cosx=\dfrac{1}{cosx}\)

\(\Leftrightarrow2sinx.cosx+2\sqrt{3}cos^2x-\sqrt{3}=2-\sqrt{3}\)

\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=1-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{2-\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k2\pi\\2x+\dfrac{\pi}{3}=\pi-arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+\dfrac{1}{2}arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k\pi\\x=\dfrac{\pi}{3}-\dfrac{1}{2}arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k\pi\end{matrix}\right.\)

tanhuquynh
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
Hồng Phúc
5 tháng 9 2021 lúc 10:37

1.

\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

Hồng Phúc
5 tháng 9 2021 lúc 10:41

2.

\(\left|cosx-sinx\right|+2sin2x=1\)

\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)

\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)

\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)

Hồng Phúc
5 tháng 9 2021 lúc 10:50

3.

\(2sin2x-3\sqrt{6}\left|sinx+cosx\right|+8=0\)

\(\Leftrightarrow2\left(sinx+cosx\right)^2-3\sqrt{6}\left|sinx+cosx\right|+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|sinx+cosx\right|=\sqrt{6}\left(vn\right)\\\left|sinx+cosx\right|=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left|sin\left(x+\dfrac{\pi}{4}\right)\right|=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\pm\dfrac{\sqrt{3}}{2}\)

...

Lê Minh Phương
Xem chi tiết
Lê Bùi
14 tháng 10 2018 lúc 19:57

đk \(X\ne\dfrac{k\pi}{2}\left(k\in Z\right)\)

\(8sinx.cos^2x=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow4sin2x.cosx=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow4.\dfrac{1}{2}\left(sin3x+sinx\right)=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow2sin3x+2sinx=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow2sin3x=\sqrt{3}cosx-sinx\)

\(\Leftrightarrow sin3x=\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\)

\(\Leftrightarrow sin3x=sin\left(\dfrac{\pi}{3}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{3}-x+k2\pi\\3x=x+\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\left(k\in Z\right)\)

Hoàng Anh
Xem chi tiết
I
21 tháng 9 2023 lúc 15:00

a,

\(\cos^3x-\sin^3x=\cos x+\sin x\\ < =>\cos^3x-\cos x=\sin^3x-\sin x\\ < =>\cos x\left(\cos^2x-1\right)=\sin x\left(\sin^2x-1\right)\\ < =>\cos x.\left(-\sin^2x\right)=\sin x.\left(-\cos^2x\right)\\ < =>\dfrac{1}{cosx}=\dfrac{1}{sinx}\)

b,

\(2sinx+2\sqrt{3}cosx=\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\\ < =>2sinx-\dfrac{1}{sinx}=\dfrac{\sqrt{3}}{cosx}-2\sqrt{3}cosx\\ < =>\dfrac{2sin^2x-1}{sinx}=\dfrac{\sqrt{3}.cosx.\left(1-2cos^2x\right)}{cosx}\\ < =>\dfrac{cos2x}{sinx}=\sqrt{3}.cos2x\\ < =>\dfrac{1}{sinx}=\sqrt{3}\)

Kinder
Xem chi tiết
_Halcyon_:/°ಠಿ
29 tháng 5 2021 lúc 16:28

undefined