Chứng tỏ rằng \(\dfrac{n+2}{2n+3}\),(n\(\in\)N) là phân số tối giản
Chứng tỏ rằng \(\dfrac{2n+5}{n+3}\) ( n \(\in\) N ) là 1 phân số tối giản.
\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮a\\2n+5⋮a\end{matrix}\right.\Leftrightarrow a=1\)
Vậy: 2n+5/n+3 là một phân số tối giản
gọi d là ước chung của n+3 và 2n+5 với d∈N
⇒n+3⋮d và 2n+5⋮d
⇒(n+3)-(2n+5)⋮d ⇒2(n+3)-(2n+5)⋮d⇔1⋮d⇒d=1∈N
⇒ƯC(n+3 và 2n+5)=1
⇒ƯCLN(n+3 và 2n+5)=1⇒\(\dfrac{2n+5}{n+3}\),(n∈N) là phân số tối giản
Chứng tỏ rằng \(\dfrac{2n+3}{n+1}\) với n ∈ N là phân số tối giản
Chứng tỏ rằng mọi phân số có dạng :
\(\dfrac{2n+3}{3n+5}\) = ( n ∈ N ) đều là phân số tối giản .
Giải:
Gọi ƯCLN (2n+3;3n+5)=d
Ta có:
2n+3:d =>3. (2n+3):d
3n+5:d=> 2. (3n+5):d
=> [3. (2n+3) - 2.(3n+5)]:d
=>(6n+9 - 6n-10): d
=> -1:d
=> d={1,-1}
Tick mình nha
chứng tỏ rằng phân số : \(\frac{n+2}{2n+3}\)là phân số tối giản ( n\(\in\)N )
Gọi ƯCLN của n+2 và 2n+3 là d
Ta có:
\(n+2⋮d;2n+3⋮d\)
\(\Rightarrow2n+4⋮d;2n+3⋮d\)
\(\Rightarrow2n+4-2n-3⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Suy ra \(\left(n+2;2n+3\right)=1\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản
1. Chứng tỏ rằng \(\dfrac{30n+1}{15n+2}\) là phân số tối giản (n\(\in\)N)
2. Cộng cả tử và mẫu của phân số \(\dfrac{23}{40}\) với cùng một số tự nhiên n rồi rút gọn, ta được \(\dfrac{3}{4}\). Tìm số n.
2) Theo đề, ta có: \(\dfrac{23+n}{40+n}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(n+23\right)=3\left(n+40\right)\)
\(\Leftrightarrow4n+92-3n-120=0\)
\(\Leftrightarrow n=28\)
Vậy: n=28
gọi UCLN của (30n+1,15n+2) là d 30n+1 chia hết cho d
suy ra:30n+1 chia hết cho d 15n+2 chia hết cho d
suy ra:30n+4 chia hết cho d (30n+4)-(30n+1) chia hết cho d
3 chia hết cho d vì 30n+1,15n+2 ko chia hết cho d
nên ucln =1 vậy ps 30n+1/15n+2 là ps tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng các phân số sau tối giản
a) \(\dfrac{2n+7}{2n+3}\) (n ∈ N)
b)\(\dfrac{6n+5}{8n+7}\)(n ∈ N)
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Chứng tỏ rằng phân sau là phân số tối giản với mọi n thuộc N :n^3+2n/n^4+3n^2+1
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.