Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 12 2018 lúc 5:41

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Trường hợp 1 .

I thuộc đoạn AO (0 < x < a/2)

Khi đó I ở vị trí I1

Ta có: (α) // (SBD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì (α) // BD nên (α) cắt (ABD) theo giao tuyến M1N1 ( qua I1) song song với BD

Tương tự (α) // SO nên (α) cắt (SOA) theo giao tuyến

S1T1 song song với SO.

Ta có thiết diện trong trường hợp này là tam giác S1M1N1.

Nhận xét. Dễ thấy rằng S 1 M 1   / /   S B   v à   S 1 N 1   / /   S D . Lúc đó tam giác S1M1N1 đều.

Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)

Khi đó I ở vị trí I2. Tương tự như trường hợp 1 ta có thiết diện là tam giác đều

S 2 M 2 N 2   c ó   M 2 N 2   / /   B D , S 2 M 2   / /   S B ,   S 2 N 2   / /   S D .

Trường hợp 3. I ≡ O. Thiết diện chính là tam giác đều SBD.

b) Ta lần lượt tìm diện tích thiết diện trong các trường hợp 1,2,3.

Trường hợp 1. I thuộc đoạn AO (0 < x < a/2)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trường hợp 3. I ≡ O.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tóm lại

Giải sách bài tập Toán 11 | Giải sbt Toán 11

∗ Đồ thị của hàm số S theo biến x như sau:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Sthiết diện lớn nhất khi và chỉ khi x = a/2.

Bình luận (0)
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:42

Tham khảo hình vẽ:

TH1: \(\left( \alpha  \right)\) cắt đoạn \(AO\) tại \(I\).

Gọi \(E,F,G\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SA,AB,AD\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = FG\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow FG\parallel B{\rm{D}} \Rightarrow \frac{{AF}}{{AB}} = \frac{{AG}}{{AD}} = \frac{{FG}}{{B{\rm{D}}}}\left( 1 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAB} \right) = EF\\\left( {SAB} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow EF\parallel SB \Rightarrow \frac{{AF}}{{AB}} = \frac{{AE}}{{AS}} = \frac{{EF}}{{SB}}\left( 2 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAD} \right) = EG\\\left( {SAD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow EG\parallel SD \Rightarrow \frac{{AG}}{{AD}} = \frac{{AE}}{{AS}} = \frac{{EG}}{{SD}}\left( 3 \right)\end{array}\)

Từ (1), (2) và (3) suy ra \(\frac{{EF}}{{SB}} = \frac{{EG}}{{S{\rm{D}}}} = \frac{{FG}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(EF = EG = FG\). Vậy tam giác \(EFG\) đều.

Bình luận (0)
Hà Quang Minh
22 tháng 9 2023 lúc 12:42

Tham khảo hình vẽ:

TH2: \(\left( \alpha  \right)\) cắt đoạn \(CO\) tại \(J\).

Gọi \(M,N,P\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SC,BC,C{\rm{D}}\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = NP\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow NP\parallel B{\rm{D}} \Rightarrow \frac{{CN}}{{CB}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\left( 4 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SBC} \right) = MN\\\left( {SBC} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow MN\parallel SB \Rightarrow \frac{{CM}}{{C{\rm{S}}}} = \frac{{CN}}{{CB}} = \frac{{MN}}{{SB}}\left( 5 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SCD} \right) = MP\\\left( {SCD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow MP\parallel SD \Rightarrow \frac{{C{\rm{M}}}}{{C{\rm{S}}}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{MP}}{{SD}}\left( 6 \right)\end{array}\)

Từ (4), (5) và (6) suy ra \(\frac{{MN}}{{SB}} = \frac{{MP}}{{S{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(MN = MP = NP\). Vậy tam giác \(MNP\) đều.

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 10 2019 lúc 9:03

Bình luận (0)
Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:43

loading...

 

a) \(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)

\(M\) là trung điểm của \(SA\)

\( \Rightarrow OM\) là đường trung bình của tam giác \(SAC\)

\(\left. \begin{array}{l} \Rightarrow OM\parallel SC\\SC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SBC} \right)\)

\(O\) là trung điểm của \(B{\rm{D}}\) (theo tính chất hình bình hành)

\(N\) là trung điểm của \(SD\)

\( \Rightarrow ON\) là đường trung bình của tam giác \(SB{\rm{D}}\)

\(\left. \begin{array}{l} \Rightarrow ON\parallel SB\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow ON\parallel \left( {SBC} \right)\)

\(\left. \begin{array}{l}OM\parallel \left( {SBC} \right)\\ON\parallel \left( {SBC} \right)\\OM,ON \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow \left( {OMN} \right)\parallel \left( {SBC} \right)\)

b) \(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)

\(E\) là trung điểm của \(AB\)

\( \Rightarrow OE\) là đường trung bình của tam giác \(ABC\)

\(\left. \begin{array}{l} \Rightarrow OE\parallel BC\\BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow OE\parallel \left( {SBC} \right)\)

Do \(\left( {OMN} \right)\parallel \left( {SBC} \right)\) nên \(E \in \left( {OMN} \right)\)

Ta có:

\(\left. \begin{array}{l}EF \subset \left( {OMN} \right)\\\left( {OMN} \right)\parallel \left( {SBC} \right)\end{array} \right\} \Rightarrow EF\parallel \left( {SBC} \right)\)

Bình luận (0)
Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:31

loading...

 

a) \(M\) là trung điểm của \(SC\)

\(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)

\( \Rightarrow OM\) là đường trung bình của tam giác \(SAC\)

\(\left. \begin{array}{l} \Rightarrow OM\parallel SA\\SA \subset \left( {SA{\rm{D}}} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SA{\rm{D}}} \right)\)

Ta có:

\(\left. \begin{array}{l}OM\parallel SA\\SA \subset \left( {SBA} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SBA} \right)\)

b) Ta có:

\(\left. \begin{array}{l}D \in \left( {OM{\rm{D}}} \right) \cap \left( {SA{\rm{D}}} \right)\\OM \subset \left( {OM{\rm{D}}} \right)\\SA \subset \left( {SA{\rm{D}}} \right)\\OM\parallel SA\end{array} \right\}\)

\( \Rightarrow \) Giao tuyến của hai mặt phẳng \(\left( {OMD} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(d\) đi qua điểm \(D\), song song với \(OM\) và \(SA\).

Bình luận (0)
camcon
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 lúc 16:09

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

Bình luận (0)
Nguyễn Việt Lâm
7 tháng 1 lúc 16:10

loading...

Bình luận (0)
27.Trúc Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 4:35

a: \(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

\(D\in FS\subset\left(SFE\right)\)

\(B\in SE\subset\left(SFE\right)\)

Do đó: \(BD\subset\left(SFE\right)\)

Ta có: \(O\in BD\subset\left(SEF\right)\)

\(O\in AC\subset\left(ACD\right)\)

Do đó: \(O\in\left(SEF\right)\cap\left(ACD\right)\)

mà \(D\in\left(SEF\right)\cap\left(ACD\right)\)

nên \(\left(SEF\right)\cap\left(ACD\right)=DO\)

b: Xét ΔSDB có

E,F lần lượt là trung điểm của SB,SD

=>EF là đường trung bình của ΔSDB

=>EF//DB

Xét (ABCD) và (AEF) có

BD//EF

\(A\in\left(ABCD\right)\cap\left(AEF\right)\)

Do đó: (ABCD) giao (AEF)=xy, xy đi qua A và xy//BD//EF

 

Bình luận (1)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 2 2018 lúc 15:44

Bình luận (0)
Trần Huyền
Xem chi tiết