A=\(\dfrac{100^{10+1}}{100^{10-1}}\)và B=\(\dfrac{100^{10-1}}{100^{10-3}}\)
Đúng ghi Đ, sai ghi S
a) \(\dfrac{3}{10}< 0,3\) .......
\(\dfrac{3}{10}=0,3\) .......
b)\(\dfrac{135}{100}=1,35\) ....
\(\dfrac{135}{100}>1,35\) ........
c) 1\(\dfrac{7}{100}>1,7\) ......
1\(\dfrac{7}{100}< 1,7\)
Đúng ghi Đ,sai ghi S:
a)\(\dfrac{1}{10}\) gấp 10 lần \(\dfrac{1}{100}\) __ b)\(\dfrac{1}{100}\) gấp 10 lần \(\dfrac{1}{10}\)__
c)\(\dfrac{1}{100}\) gấp lên 10 lần được \(\dfrac{1}{1000}\)__ d) \(\dfrac{1}{100}\) giảm đi 10 lần được \(\dfrac{1}{1000}\)__
__ là chỗ điền nha.
So sánh:A=\(\dfrac{10^{100}+1}{10^{99} +1}\) và B=\(\dfrac{10^{101}+1}{10^{100}+1}\)
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) > 1-(9/10100+10)
hay 1/10.A>1/10.B
=>A>B
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) < 1-(9/10100+10)
hay 1/10.A<1/10.B
=>A<B
Đáp án dưới mới đúng nhé
vừa mình làm nhầm
Viết các phân số thập phân sau dưới dạng số thập phân:
a) \(\dfrac{1}{10};\dfrac{1}{100};\dfrac{1}{1000};\dfrac{1}{10000}\)
b) \(\dfrac{84}{10};\dfrac{225}{100};\dfrac{6453}{100};\dfrac{25789}{10000}\)
a) \(\dfrac{1}{10}=0,1\)
\(\dfrac{1}{100}=0,01\)
\(\dfrac{1}{1000}=0,001\)
\(\dfrac{1}{10000}=0,0001\)
b) \(\dfrac{84}{10}=8,4\)
\(\dfrac{225}{100}=2,25\)
\(\dfrac{6453}{100}=64,53\)
\(\dfrac{25789}{10000}=2,5789\)
so sánh :
A = \(\dfrac{10^{99}+1}{10^{100}+1}\)
B = \(\dfrac{10^{100}+1}{10^{101}+1}\)
\(A=\dfrac{10^{99}+1}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10\left(10^{99}+1\right)}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{100}+10}{10^{100}+1}=\dfrac{10^{100}+1+9}{10^{100}+1}=1+\dfrac{9}{10^{100}+1}\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10\left(10^{100}+1\right)}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)
Do \(\dfrac{9}{10^{100}+1}>\dfrac{9}{10^{101}+1}\) nên \(10A>10B\)
\(\Rightarrow A>B\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)
\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)
\(B< \dfrac{10^{100}+10}{10^{101}+10}\)
\(B< \dfrac{10\left(10^{99}+1\right)}{10\left(10^{100}+1\right)}\)
\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)
\(B< A\)
Ta có : \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)
\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)
\(B< \dfrac{10^{100}+10}{10^{101}+10}\)
\(B< \dfrac{10.\left(10^{99}+1\right)}{10.\left(10^{100}+1\right)}\)
\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)
Vậy \(B< A\)
A=\(\dfrac{1}{2}\) nhân \(\dfrac{3}{4}\)nhân \(\dfrac{5}{6}\)nhân ..... nhân \(\dfrac{99}{100}\)và B=\(\dfrac{1}{10}\)
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ < \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{97}{98}.\dfrac{98}{99}< \dfrac{1}{99}\\ < \dfrac{1}{10}.\\\\ =>A< \dfrac{1}{10}\)
\(\dfrac{92-\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}-...-\dfrac{92}{100}}{\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}}\)
so sánh
A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\)và \(B=\dfrac{1}{10}\)
Cho A = \(\dfrac{1}{2}x\dfrac{3}{4}x\dfrac{5}{6}x...x\dfrac{99}{100};B=\dfrac{1}{10}\) So sánh: A và B.
Tham khảo:
https://lazi.vn/edu/exercise/so-sanh-a-1-2-3-4-5-6-99-100-va-b-1-10