\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ < \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{97}{98}.\dfrac{98}{99}< \dfrac{1}{99}\\ < \dfrac{1}{10}.\\\\ =>A< \dfrac{1}{10}\)
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ < \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{97}{98}.\dfrac{98}{99}< \dfrac{1}{99}\\ < \dfrac{1}{10}.\\\\ =>A< \dfrac{1}{10}\)
a)chứng minh rằng :\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)........+\(\dfrac{1}{100^2}< \dfrac{1}{2}\)
b)tính nhanh tổng S với S= \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+......+\dfrac{1}{61.63}\)
các cao nhân gải giúp với ạ !!! iem đang cần gấp
Xin mời các đại tỉ cao nhân giúp em :((( em xin trân trọng cảm ơn :)))
Tính hợp lí:
\(a,\dfrac{6}{21}-\dfrac{-12}{44}+\dfrac{10}{14}-\dfrac{1}{-4}-\dfrac{18}{33}\\ b,\dfrac{3}{7}.\left(-\dfrac{2}{5}\right).2\dfrac{1}{3}.20.\dfrac{19}{72}\)
(Bạn nào biết thì giải giúp mình nhé, lưu ý dấu "." là dấu nhân)
Tìm x, biết:
a) -\(\dfrac{5}{6}\) - x = \(\dfrac{2}{3}\)
b) \(\dfrac{2}{3}\)x + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
c) \(\dfrac{2}{9}\) - \(\dfrac{7}{8}\) . x = \(\dfrac{1}{3}\)
d) \(\dfrac{4}{5}\) + \(\dfrac{5}{7}\) : x = \(\dfrac{1}{6}\)
e) (\(\dfrac{2}{5}\) - \(1\dfrac{2}{3}\)) : x - \(\dfrac{3}{5}\) = \(\dfrac{2}{5}\)
f) 1 - (-\(\dfrac{3}{4}\) + x) . \(2\dfrac{2}{3}\) = 0
Cho A = \(\dfrac{1}{2}x\dfrac{3}{4}x\dfrac{5}{6}x...x\dfrac{99}{100};B=\dfrac{1}{10}\) So sánh: A và B.
\(\text{Bài 4. Chứng tỏ rằng:}\)
\(a\)) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}< 1\)
\(b\)) \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}>1\)
\(c\)) \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
\(d\)) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}< 1\)
A=\(\dfrac{2}{3}\)+\(\dfrac{14}{15}\)+\(\dfrac{34}{35}\)+\(\dfrac{62}{63}\)+\(\dfrac{98}{99}\)+\(\dfrac{142}{143}\)+\(\dfrac{194}{195}\)
Và B=5+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^3}\)+\(^{\dfrac{1}{4^4}}\)+\(\dfrac{1}{5^5}\)+\(\dfrac{1}{6^6}\)+\(\dfrac{1}{7^7}\).So sánh A và B
Cho S = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) so sánh S và \(\dfrac{1}{5}\)
chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
Tính: A= 4.\(5^{100}\)(\(\dfrac{1}{5}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{5^3}\)+...+\(\dfrac{1}{5^{99}}\)+\(\dfrac{1}{5^{100}}\))+1