Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Đinh

so sánh :

A = \(\dfrac{10^{99}+1}{10^{100}+1}\)

B = \(\dfrac{10^{100}+1}{10^{101}+1}\)

Phạm Ngân Hà
12 tháng 8 2017 lúc 21:11

\(A=\dfrac{10^{99}+1}{10^{100}+1}\)

\(\Leftrightarrow10A=\dfrac{10\left(10^{99}+1\right)}{10^{100}+1}\)

\(\Leftrightarrow10A=\dfrac{10^{100}+10}{10^{100}+1}=\dfrac{10^{100}+1+9}{10^{100}+1}=1+\dfrac{9}{10^{100}+1}\)

\(B=\dfrac{10^{100}+1}{10^{101}+1}\)

\(\Leftrightarrow10B=\dfrac{10\left(10^{100}+1\right)}{10^{101}+1}\)

\(\Leftrightarrow10B=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)

Do \(\dfrac{9}{10^{100}+1}>\dfrac{9}{10^{101}+1}\) nên \(10A>10B\)

\(\Rightarrow A>B\)

 Mashiro Shiina
12 tháng 8 2017 lúc 21:18

Áp dụng tính chất:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)

\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)

\(B< \dfrac{10^{100}+10}{10^{101}+10}\)

\(B< \dfrac{10\left(10^{99}+1\right)}{10\left(10^{100}+1\right)}\)

\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)

\(B< A\)

Eren Jeager
13 tháng 8 2017 lúc 15:09

Ta có : \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)

\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)

\(B< \dfrac{10^{100}+10}{10^{101}+10}\)

\(B< \dfrac{10.\left(10^{99}+1\right)}{10.\left(10^{100}+1\right)}\)

\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)

Vậy \(B< A\)


Các câu hỏi tương tự
Nguyễn Thị Huyền Trang
Xem chi tiết
Lương Tuấn Anh
Xem chi tiết
Ely Trần
Xem chi tiết
nhok hanahmoon
Xem chi tiết
Miko
Xem chi tiết
Nguyen Ngoc Linh
Xem chi tiết
Tùng
Xem chi tiết
Trần Thị Hương
Xem chi tiết
Nguyễn Thị Chiền
Xem chi tiết