\(A=\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+2^{12}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^9.3^{19}+2^{12}}=\dfrac{2^{10}+5.2^8}{3^{10}+2^3}=\dfrac{2^7+5.2^5}{3^{10}}\)
\(B=\dfrac{4}{35}+\dfrac{4}{63}+\dfrac{4}{99}+\dfrac{4}{143}+\dfrac{4}{195}\)
\(=2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\right)\)
\(=2.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{15}\right)=2\left(\dfrac{2}{15}\right)\)=\(\dfrac{4}{15}\)
\(A=\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}=\dfrac{5}{2^2.3}=\dfrac{5}{12}\)