chứng minh x^4+16>=2x^3+8x
Chứng minh
a.2a^3 + 8a < hoặc = a^4 +16
b. x^2+16>= 2x^2+8x
a)\(2a^3+8a\le a^4+16\)
\(\Leftrightarrow a^4-2a^3-8a+16\ge0\)
\(\Leftrightarrow a^3\left(a-2\right)-8\left(a-2\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a^3-8\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2\right)\left(a^2+2a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)(luôn đúng)
=>đpcm
a.
2a3 + 8a \(\le\) a4 +16
<=>2a3 + 8a - a4 -16 \(\le\) 0
<=> a4 - 2a3 -8a + 16 \(\ge\) 0
<=> a3(a - 2) - 8(a - 2) \(\ge\) 0
<=> (a - 2)(a3 - 8)\(\ge\) 0
<=> (a - 2)(a - 2)(a2 + 2a + 4) \(\ge\) 0
<=> (a - 2)2 [(a + 1)2 +3] \(\ge\) 0
Ta thấy (a - 2)2 \(\ge\) 0 \(\forall\)x và (a + 1)2 \(\ge\) 0 \(\forall\)x nên bất đẳng thức cần c/m đúng
b. đề sao sao á :))
Tìm GTNN của:
\(x = {x^4+2x^3 +8x+16 \over x^4-2x^3+8x^2-8x+16}\)
Tử \(x^4+2x^3+8x+16\)
\(=x^4-2x^3+4x^2+4x^3-8x^2+16x+4x^2-8x+16\)
\(=x^2\left(x^2-2x+4\right)+4x\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)
\(=\left(x^2+4x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)^2\left(x^2-2x+4\right)\)
Mẫu \(x^4-2x^3+8x^2-8x+16\)
\(=x^4-2x^3+4x^2+4x^2-8x+16\)
\(=x^2\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+4\right)\)
Thay tử và mẫu vào ta có:\(\frac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(x^2+4\right)\left(x^2-2x+4\right)}=\frac{\left(x+2\right)^2}{x^2+4}\ge0\)
Dấu "=" khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy Min=0 khi x=-2
1)Tìm a,b sao cho đa thức f(x)=2x4+ax3+3x2+4x+b chia hết cho đa thức g(x)=(x+1).(x-2)
2) chứng minh rằng C= x4-2x3+2x2-8x+16 > 0, với mọi x
Tìm GTNN: E= x\(^{ }\)^4+2x3+8x+16/x^4-2x^3+8x^2-8x+16 help !
Chứng minh bất đẳng thức x⁴+16>=2x³+8x
Giả sử : \(x^4+16\ge2x^3+8x\)
\(\Leftrightarrow x^4-2x^3-8x+16\ge0\)
\(\Leftrightarrow\left(x^4-2x^3\right)-\left(8x-16\right)\ge0\)
\(\Leftrightarrow x^3\left(x-2\right)-8\left(x-2\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-8\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x^2+2x+4\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+2x+4\right)\ge0\) ( luôn đúng )
⇒ đpcm
Tìm GTNN của A
\(A=\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+16}\)
Tìn min
C=\(\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+616}\)
cho đa thức Q(x)=\(^{-3^4}\)+\(4x^3\) +\(2x^2\) +\(\dfrac{2}{3}\) -3x-\(2x^4\) -\(4x^3\) +\(8x^4\) +1+3x
a) thu gọn Q(x)
b) chứng minh Q(x) ko có nghiệm
a: \(Q\left(x\right)=-3x^4-2x^4+8x^4+4x^3-4x^3+2x^2-3x+3x+\dfrac{5}{3}\)
=3x^4+2x^2+5/3
b: Q(x)=x^2(3x^2+2)+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
cmr:1-2/x-(2x+x^2/4+2x+x^2 + 2x-x^2/4-2x+x^2):(16-8x/4-2x+x^2 -16+8x/4+2x+x^2)=(x-1/x)^2