cho đa thức P= x^2-5^4-x^3y^2+2x^4+x^3y62-7
a) rút gọn P b) tìm bậc của p
^ là mũ
bài 1:
b, thực hiện phép nhân (x mũ2 -8) . (x mũ 3 +2x + 4)
bài 2:
cho đa thức A(x)= -5/3 x mũ 2+ 3/4 x mũ 4 + 2x - 7/3 x mũ 2 -2+4x +1/4x mũ 4
a, thu gọn và sắp xếp đa thức A(x) theo lũy thừa giảm dần của biến
b,tìm bậc và hệ số cao nhất của A(x)
Bài 1:
(x² - 8)(x³ + 2x + 4)
= x².x³ + x².2x + x².4 - 8.x³ - 8.2x - 8.4
= x⁵ + 2x³ + 4x² - 8x³ - 16x - 32
= x⁵ - 6x³ + 4x² - 16x - 32
Bài 2
a) A(x) = -5/3 x² + 3/4 x⁴ + 2x - 7/3 x² - 2 + 4x + 1/4 x⁴
= (3/4 x⁴ + 1/4 x⁴) + (-5/3 x² - 7/3 x²) + (2x + 4x) - 2
= x⁴ - 4x² + 6x - 2
b) Bậc của A(x) là 4
Hệ số cao nhất là 1
`1,`
`b,`
`(x^2-8)(x^3+2x+4)`
`= x^2(x^3+2x+4)-8(x^3+2x+4)`
`= x^5+2x^3+4x^2-8x^3-16x-12`
`= x^5-6x^3+4x^2-16x-12`
`2,`
`a,`
`A(x)=-5/3x^2 + 3/4x^4 + 2x - 7/3x^2 - 2 + 4x + 1/4x^4`
`= (3/4x^4+1/4x^4)+(-5/3x^2-7/3x^2)+(2x+4x)-2`
`= x^4-4x^2+6x-2`
`b,`
Bậc của đa thức: `4`
Hệ số cao nhất: `1`.
Bài 1 : cho đơn thức: B=(-3.x.y mũ 2).(-2/5 x mũ 2 y mũ 3)
a) thu gọn B,xác định hệ số,bậc của đơn thức
b) tính giá trị của B tại x = (-1) y=2
bài 2: cho 2 đa thức:
A (x)= -3x mũ 2 +5x +2x mũ 4 - 8
B(x)= -2x mũ 4 - 8x + 3x mũ 2 + 3
a) sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến, xác định bậc của đa thức A , hệ số tự do của đa thức B
b) tính A (x) + B (x)
c) tính A (x) - B (x)
bài 3: tìm nghiệm của 2 đa thức sau
a) M=7 x-4 b) N= x mũ 2 - 7x
bài 4: cho tam giác DEF cân tại D,đường trung tuyến DA.
a) chứng minh tam giác DEA = tam giác DFA
b) cho E = 6cm ; DE= 5 cm . Tính DA
c) gọi M,N lần lượt là trung điểm DE, DF chứng minh MN // FF
Bài 1:
\(a)\)
\(B=-3xy^2.\frac{-2}{5}x^2y^3\)
\(=\frac{6}{5}.x^3y^5\)
Hệ số cao nhất: 1
Bậc của đơn thức: bậc 5
\(b)\)
Với: \(x=\left(-1\right);y=2\) ta được:
\(B=\frac{6}{5}\left(-1\right)^32^5=\frac{-192}{5}\)
Bài 2:
\(a)\)
\(A\left(x\right)=-3^2+5x+2x^4-8=2x^4-3x^2+5x-8\)
\(B\left(x\right)=-2x^4-8x+3x^2+3=-2x^4+3x^2-8x+3\)
\(b)\)
\(A\left(x\right)+B\left(x\right)=-3x-5\)
\(c)\)
\(A\left(x\right)-B\left(x\right)=4x^4-6x^2+13x-13\)
Bài 3:
\(a)\)
\(M=7x-4=0\)
\(\Leftrightarrow7x=4\)
\(\Leftrightarrow x=\frac{4}{7}\)
\(b)\)
\(N=x^2-7x=0\)
\(\Leftrightarrow x\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
cho p(x)=x^3-2x+6+3x^4-x+2x^3-2x^2 và q(x)=x^3-7+2x^2+3x-9x^2-2-4x^3 a)rút gọn rồi sắp xếp hai đa thức trên theo luỹ thừa giảm dần của biến b)tính p(x)-q(x) ( sau khi rút gọn) và tìm bậc cao nhất, hệ số cao nhất và hệ số tự do
a,P(\(x\)) = \(x^3\) - 2\(x\) + 6 + 3\(x\)4 - \(x\) + 2\(x\)3 - 2\(x\)2
P(\(x\)) = (\(x^3\) + 2\(x^3\)) - ( 2\(x\) + \(x\) ) + 6 + 3\(x^4\) - 2\(x^2\)
P(\(x\)) = 3\(x^3\) - 3\(x\) + 6 + 3\(x^4\)- 2\(x^2\)
P(\(x\) )= 3\(x^4\) + 3\(x^3\) - 2\(x^2\) - 3\(x\) + 6
Q(\(x\)) = \(x^3\) - 7 + 2\(x^2\) + 3\(x\) - 9\(x^2\) - 2 - 4\(x^3\)
Q(\(x\)) = (\(x^3\) - 4\(x^3\)) - ( 7 + 2) - (9\(x^2\) - 2\(x^2\)) + 3\(x\)
Q(\(x\)) = -3\(x^3\) - 9 - 7\(x^2\) + 3\(x\)
Q(\(x\)) = -3\(x^3\) - 7\(x^2\) + 3\(x\) - 9
Bậc cao nhất của P(\(x\)) là 4; hệ số cao nhất là: 3; hệ số tự do là 6
Bậc cao nhất của Q(\(x\)) là 3; hệ số cao nhất là -3; hệ số tự do là -9
cho đa thức A=x^2-3x+x^4-2x+x^2+2
rút gọn đa thức A
sắp xếp A theo lũy thừa tăng
tìm bậc của đa thức
tính giá trị đa thức tại x=1
A = x2 - 3x + x4 - 2x + x2 + 2
A = x4 + ( x2 + x2) - (3x + 2x) + 2
A = x4 + 2x2 - 5x +2
Bậc của đa thức là bậc 4
A(1) = 14 + 2.12 -5.1 + 2
A(1) = 0
Cho đa thức
P(x)=5+x^3-2x+4x^3+3x^2-10
Q(x)=4-5x^3+2x^2-x^3+6x+11x^3-8x
a) Thu gọn và sắp xếp các đa thức trên luỹ thừa giảm dần của biến
b) Tính P(x)-Q(x), P(x)+Q(x)
c) Tìm nghiệm của đa thức P(x)-Q(x)
d)Cho các đa thức A=5x^3y^2, B=-7/10x^3y^2^2 Tìm đa thức C=A.B và xác định phần hệ sô,phần biến và bậc của đơn thức đó
a: P(x)=5x^3+3x^2-2x-5
\(Q\left(x\right)=5x^3+2x^2-2x+4\)
b: P(x)-Q(x)=x^2-9
P(x)+Q(x)=10x^3+5x^2-4x-1
c: P(x)-Q(x)=0
=>x^2-9=0
=>x=3; x=-3
d: C=A*B=-7/2x^6y^4
Sắp xếp các đa thức sau theo bậc lũy thừa tăng rồi tìm bậc của mỗi đa thức sau khi thu gọn và chỉ ra hệ số khác 0 của mỗi đa thức.
A(x)=4x mũ 3 - 2x mũ 2 +6x -5x mũ 3 +4x mũ 2 - 10x - 4.
R(x)= -x mũ 2 + 3x mũ 4 + 3x - 2x mũ 4 + 9x mũ 5 - 6x mũ 2 - 5.
Q(x)= 9 + 5x mũ 2 - 3x mũ 3 + 6x mũ 2 + 7x mũ 3 - 4x mũ 5 -6.
B(x)= 4x mũ 3 - 2x + 5x mũ 3 - 7x + 2 x mũ 2 + 10x - 2x mũ 3 + 8.
Giải giùm em với mọi người ơi!!
Cho đa thức P(x) = \(2x + 4{x^3} + 7{x^2} - 10x + 5{x^3} - 8{x^2}\). Hãy viết đa thức thu gọn, tìm bậc và các hệ số của đa thức P(x).
\(P(x) = 2x + 4{x^3} + 7{x^2} - 10x + 5{x^3} - 8{x^2}\)
\(=(4{x^3}+5{x^3})+( 7{x^2}- 8{x^2})+(2x-10x)\)
\( = 9{x^3} - {x^2} - 8x\)
Ta thấy số mũ cao nhất của biến x là 3 nên \(P(x)\) có bậc là 3
Hệ số của \({x^3}\) là 9
Hệ số của \({x^2}\)là -1
Hệ số của x là -8
Hệ số tự do là 0
Cho hai đa thức sau: P= -x^3y -xy+x^2+4x^3y+2xy+1
Q= x^3y - 8xy - 5+2x^3y+9x^2+4 - 10x^2
a) Thu gọn đa thức P và Q . Xác định bậc của đa thức P và Q sau khi thu gọn.
b) Tính A=P+Q và B=P-Q
c) Tính giá trị của đa thức A khi x=1 và y=-1
a) Ta có: \(P=-x^3y-xy+x^2+4x^3y+2xy+1\)
\(=3x^3y+xy+x^2+1\)
Bậc của đa thức P là 4
Ta có: \(Q=x^3y-8xy-5+2x^3y+9x^2+4-10x^2\)
\(=3x^3y-8xy-x^2-1\)
Bậc của đa thức Q là 4
b) Ta có: A=P+Q
\(=3x^3y+xy+x^2+1+3x^3y-8xy-x^2-1\)
\(=6x^3y-7xy\)
Ta có: B=P-Q
\(=3x^3y+xy+x^2+1-3x^3y+8xy+x^2+1\)
\(=9xy+2x^2+2\)
c) Thay x=1 và y=-1 vào biểu thức \(A=6x^3y-7xy\), ta được:
\(6\cdot1^3\cdot\left(-1\right)-7\cdot1\cdot\left(-1\right)\)
\(=-6+7=1\)
Vậy: 1 là giá trị của biểu thức \(A=6x^3y-7xy\) tại x=1 và y=-1
bài 2 :cho đa thức A(x)=3/4x mũ 3-1+3/5x+4x mũ 2 +5/4x mũ 3 - 8/5x +4+7x mũ 2
a, thu gọn và sapws xếp đa thức A(x) theo lũy thừa giảm dần của biến
b, xác định bậc và hệ số cao nhất của đa thức A(x)
c,tìm đa thức C(x) sao cho B(x) - C (X)= A(x)
biết B(x)=2x mũ 3 + 12x mũ 2 - 3x + 3 tìm nghiệm của C(x)
a: A(x)=3/4x^3+5/4x^3+4x^2+7x^2+3/5x-8/5x-1+4
=2x^3+11x^2-x+3
b: Bậc là 3
Hệ số cao nhất là 2
c: C(x)=2x^3+12x^2-3x+3-2x^3-11x^2+x-3
=x^2-2x
C(X)=0
=>x=0 hoặc x=2