tìm a thuộc N để biểu thức sau có giá trị nguyên :
A=\(\dfrac{40\left|2a-1\right|+15}{10a-5}\)
Tìm a € N để biểu thức sau có giá trị nguyên:
\(\frac{40\left|2a-1\right|+15}{10a-5}\)
Ta có :
\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)
Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
+) Xét \(a>0\) ta có :
\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)
\(A=\frac{80a-40+15}{10a-5}\)
\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)
\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)
\(A=8+\frac{15}{10a-5}\)
Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)
Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Suy ra :
\(10a-5\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(a\) | \(\frac{3}{5}\) | \(\frac{2}{5}\) | \(\frac{4}{5}\) | \(\frac{1}{5}\) | \(1\) | \(0\) | \(2\) | \(-1\) |
Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)
+) Xét \(a=0\) ta có :
\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)
\(A=\frac{40\left|0-1\right|+15}{0-5}\)
\(A=\frac{40+15}{-5}\)
\(A=-11\) ( A nguyên )
Vậy \(a\in\left\{-1;0;1;2\right\}\)
Chúc bạn học tốt ~
Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(\left|2a-1\right|=2a-1\)
\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)
Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)
Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)
\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)
\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)
\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)
\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)
\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)
Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)
Giúp mình nhak
Tìm a thuộc N de biểu thức sau có giá trị nguyên
40|2a-1|+15/10a-5
M=\(\frac{40|2a-1|+15}{10a-5}\)
Tìm a \(\in\)N để biểu thức M có giá trị là số nguyên
cho biểu thức
A=\(\left(\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\right)\)
a)tìm đkxđ của a để biểu thức A xác định
b)rút gọn biểu thức A
c)tìm các giá trị nguyên của a để biểu thức A có giá trị nguyên
a) ĐKXĐ: a2-1 ≠0 ⇔ (a-1)(a+1)≠0 ⇔\(\left[{}\begin{matrix}a-1\ne0\\a+1\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ne1\\a\ne-1\end{matrix}\right.\)
b) A=\(\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\) , a≠1, -1
=\(\dfrac{2a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2-a\left(a-1\right)+a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2-a^2+a+a^2+a}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2+2a}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a}{a-1}\)
vậy A =\(\dfrac{2a}{a-1}\) với a≠1,-1.
c) Có:A= \(\dfrac{2a}{a-1}\) = \(\dfrac{2a-2+2}{a-1}=\dfrac{2\left(a-1\right)+2}{a-1}=2+\dfrac{2}{a-1}\)
Để a∈Z thì a-1 ∈ Z ⇒ (a-1) ∈ Ư(2) =\(\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
a-1 | 1 | -1 | 2 | -2 |
a | 2 | 0 | 3 | -1 |
Thử lại | TM | TM | TM | ko TM(vì a≠-1 |
Vậy để biểu thức A có giá trị nguyên thì a∈\(\left\{2;0;3\right\}\)
a) ĐKXĐ: \(a\notin\left\{1;-1\right\}\)
b) Ta có: \(A=\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\)
\(=\dfrac{2a^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}+\dfrac{a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a^2-a^2+a+a^2+a}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a^2+2a}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a}{a-1}\)
c) Để A nguyên thì \(2a⋮a-1\)
\(\Leftrightarrow2a-2+2⋮a-1\)
mà \(2a-2⋮a-1\)
nên \(2⋮a-1\)
\(\Leftrightarrow a-1\inƯ\left(2\right)\)
\(\Leftrightarrow a-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow a\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(a\in\left\{0;2;3\right\}\)
Vậy: Để A nguyên thì \(a\in\left\{0;2;3\right\}\)
\(\left(\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-1\right):\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\)
1. Tìm ĐK, rút gọn
2. Tìm a thuộc Z để biểu thức đạt giá trị nguyên
1: ĐKXĐ: a>=0; a<>1
Đặt \(A=\left(\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-1\right):\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\)
\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\sqrt{a}+2}-1\right):\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+1\right)\)
\(=\dfrac{\left(\sqrt{a}-1\right)}{\sqrt{a}+1}\)
2: Để A là số nguyên thì \(\sqrt{a}-1⋮\sqrt{a}+1\)
=>\(\sqrt{a}+1-2⋮\sqrt{a}+1\)
=>\(-2⋮\sqrt{a}+1\)
=>\(\sqrt{a}+1\in\left\{1;-1;2;-2\right\}\)
=>\(\sqrt{a}\in\left\{0;-2;1;-3\right\}\)
=>\(\sqrt{a}\in\left\{0;1\right\}\)
=>\(a\in\left\{0;1\right\}\)
Kết hợp ĐKXĐ, ta được: a=0
Giúp mk với:
1) Cho 4 điểm bất kì trong đó không có 3 điểm nào thẳng hàng, số tam giác nhân các điểm đã cho làm đỉnh có được nhiều nhất là:
A.4 B.5 C.6 D.8
2) Tìm a € N để biểu thức sau có giá trị nguyên \(\frac{40\left|2a-1\right|+15}{10a-5}\)
Câu 1:
Trong 4 điểm ta chọn được 4 điểm làm đỉnh thứ nhất của tam giác, sau đó ta còn 3 điểm cho đỉnh thứ hai và 2 điểm cho đỉnh thứ ba.
Mà nếu như vậy thì mỗi tam giác bị lặp lại đúng sáu lần. Cho nên ta có công thức tính tam giác là:
\(\frac{4.3.2}{6}=\frac{24}{6}=4\)( tam giác )
Mình không hiểu rõ câu hỏi của cậu lắm nên cứ đọc đỡ tham khảo cách tính tam giác của mình nhé!
Câu 2
Vì \(|2a-1|\ge0\)với mọi a.
=> \(2a-1< 0\)hoặc \(2a-1\ge0\)
Vậy ta có hai trường hợp
TH1: Nếu 2a - 1 < 0 ( với ĐK: a <1/2 )
=> \(\frac{40|2a-1|+15}{10a-5}=\frac{40\left(-2a+1\right)+15}{10a-5}\)
\(=\frac{-40\left(2a-1\right)+15}{10a-5}\)
\(=\frac{-40\left(2a-1\right)+15}{5\left(2a-1\right)}\)
\(=\frac{-40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)
\(=-8+\frac{3}{2a-1}\)
Vì -8 thuộc Z
=> Để biểu thức trên có giá trị nguyên thì \(\frac{3}{2a-1}\)phải thuộc Z.
=> \(3⋮2a-1\)
=> 2a -1 thuộc Ư(3)
=> 2a - 1 thuộc { 1;-1;3;-3 }
=> 2a thuộc { 2;0;4;-2}
=> a thuộc { 1;0;2;-1 }
Đối chiếu với ĐK a < 1/2 thì chỉ có 0 và -1 thỏa mãn
=> x = 0 ; x = -1
TH2: Nếu \(2a-1\ge0\)( với ĐK: a > hoặc bằng 1/2 )
\(=>\frac{40|2a-1|+15}{10a-5}=\frac{40\left(2a-1\right)+15}{5\left(2a-1\right)}\)
\(=\frac{40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)
\(=8+\frac{3}{2a-1}\)
Vì 8 thuộc Z
=> Để biểu thức trên có giá trị nguyên thì 3/2a-1 phải thuộc Z
=> 3 chia hết cho 2a - 1
=> 2a-1 thuộc Ư(3)
=> 2a - 1 thuộc { 1;-1;3;-3 }
=> 2a thuộc { 2;0;4;-2}
=> a thuộc {1;0;2;-1}
Đối chiếu điều kiện a lớn hơn hoặc bằng 1/2 thì 1 và 2 thỏa mãn.
1) đáp án D
2) mình hôm nay lười lắm éo muốn làm thông cảm
Tìm a ∈N để iểu thức sau có giá trị guyê A=\(\frac{40\left|2a-1\right|+15}{10a-5}\)
Cho dãy số \(1;-4;7;-10;...\)
a, Viết số hag tôgr quát của dãy
, tihs tôgr của 50 số hagj dầu tiê của dãy
Ai hah mk tích 3 cái mk có 3 ích
Cho biểu thức: \(A=\dfrac{x^3-3}{\left(x+1\right).\left(x-3\right)}-\dfrac{2.\left(x-3\right)}{x+1}-\dfrac{x+3}{x-3}\). Tìm giá trị nguyên của x để A có giá trị nguyên
tìm giá trị lớn nhất của biểu thức D =
\(\dfrac{2a^{2^{ }}-10a-1}{a^2-2a-1}+5\)
với a khác 1