Rút gọn phân thức \(\dfrac{4x^3-16x^2+16x}{x^2-4}\)
Bài 1 : ( 3 đ ) : Rút gọn các phân thức sau a)\(\dfrac{16x^2-1}{16x^2-8x+1}\) b)\(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)
\(a.\)
\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)
\(b.\)
\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)
a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)
\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)
\(=\dfrac{4x+1}{4x-1}\)
b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)
\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{y-2x}{y+2x}\)
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy...
b)Đk: \(x\ge-1\)
Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)
\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)
Vậy...
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)
b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)
a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)
✱ giải pt:
a.\(\sqrt{x^2-4x+4}\)\(=5\)
⇔\(\sqrt{\left(x-2\right)^2}=5\)
⇒\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy....
b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
⇔ \(4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
⇔ \(4\sqrt{x+1}=16\)
⇔ \(\sqrt{x+1}=16\)
⇒ \(x+1=256\)
⇔ \(x=255\)
vậy.....
cho phân thức c=16x^2-8x+1/4x^3-x^2
a)Tìm đkxđ của phân thức
b)Rút gọn
c)Tính giá trị của phân thức tại x=3
d)Tìm các giá trị của x để phân thức có giá trị = 0
a) x ≠ -5.
b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5
c) Ta có P = 1 Û x = -4 (TMĐK)
d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .
Cho biểu thức sau: B=\(\left(\dfrac{2x+1}{1-2x}-\dfrac{1-2x}{1+2x}-\dfrac{16x^2}{4x^2-1}\right):\dfrac{16x^3-4x}{4x^2-4x+1}\)
a) Rút gọn biểu thức B
b) Tìm gtrị của x để biểu thức B có gtrị dương.
bài 1:rút gọn biểu thức
a)(x+3)^2+(x-3)^2+2(x^2-9)
b)(4x-1)^3-(4x-3)(16x^2+3)
bài 2:phân tích đa thức thành nhân tử
a)16x-8xy+xy^2
b)3(3-x)=2x(x-3)
c)3x^2+4x-4
bài 3:tìm x,biết:
a)(3x-2)(3x+4)-(2-3x)^2=6
b)2(x-3)-(x-3)(3x-2)=0
c)(x-1)(x+2)-x(x-2)=-5
Bài 1 :
a, \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2-9\right)\)
\(=x^2+6x+9+x^2-6x+9+2x^2-18\)
\(=4x^2\)
b, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9=8\)
Bài 2 :
a, \(16x-8xy+xy^2=x\left(16-8y+y^2\right)=x\left(4-y\right)^2\)
b, \(3\left(3-x\right)-2x\left(x-3\right)=3\left(3-x\right)+2x\left(3-x\right)=\left(3+2x\right)\left(3-x\right)\)
c, \(3x^2+4x-4=3x^2+6x-2x-4=\left(x+2\right)\left(3x-2\right)\)
Rút gọn biểu thức
a) ( x + 3 )2 + ( x - 3 )2 + 2( x2 - 9 )
= x3 + 6x + 9 + x2 - 6x + 9 + 2x2 - 18
= 4x2
b) ( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )
= 64x3 - 48x2 + 12x - 1 - ( 64x3 - 48x2 + 12x - 9 )
= 64x3 - 48x2 + 12x - 1 - 64x3 + 48x2 - 12x + 9
= 8
PTĐTTNT
a) 16x - 8xy + xy2
= x( 16 - 8y + y2 )
= x( 4 - y )2
b) 3( 3 - x ) ± 2x( x - 3 ) < không biết thay dấu gì (: >
= 3( 3 - x ) \(\mp\)2x( 3 - x )
= ( 3 - x )( 3 \(\mp\)2x )
c) 3x2 + 4x - 4
= 3x2 + 6x - 2x - 4
= 3x( x + 2 ) - 2( x + 2 )
= ( x + 2 )( 3x - 2 )
Tìm x
a) ( 3x - 2 )( 3x + 4 ) - ( 2 - 3x )2 = 6
<=> ( 3x - 2 )( 3x + 4 ) - ( 3x - 2 )2 = 6
<=> ( 3x - 2 )( 3x + 4 - 3x + 2 ) = 6
<=> ( 3x - 2 ).6 = 6
<=> 3x - 2 = 1
<=> x = 1
b) 2( x - 3 ) - ( x - 3 )( 3x - 2 ) = 0
<=> ( x - 3 )( 2 - 3x + 2 ) = 0
<=> ( x - 3 )( 4 - 3x ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\4-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{3}\end{cases}}\)
c) ( x - 1 )( x + 2 ) - x( x - 2 ) = -5
<=> x2 + x - 2 - x2 + 2x = -5
<=> 3x - 2 = -5
<=> 3x = -3
<=> x = -1
Thực hiện phép tính , rút gọn bt
\(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(\dfrac{x+y}{2\left(x-y\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
Rút gọn các phân thức sau:
a) \(\dfrac{6x^2y^2}{8xy^{ }5}\)
b) \(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
c) \(\dfrac{2x^2+2x
}{x+1}\)
d) \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
e) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)
c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)
rút gọn phân thức :
\(\frac{16x^3-25x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
\(=\frac{x\left(16x^2-25\right)}{\left(x-3\right)\left(3-8+4x\right)}\)
\(=\frac{x\left(4x-5\right)\left(4x+5\right)}{\left(x-3\right)\left(4x-5\right)}\)
\(\frac{x\left(4x+5\right)}{x-3}=\)\(\frac{4x^2-5x}{x-3}\)
Cho biểu thức B = 16 x + 16 - 9 x + 9 + 4 x + 4 + x + 1
với x ≥ -1.
Rút gọn biểu thức B;