Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Siêu Nhân X

Những câu hỏi liên quan
Tomiihuhuumm
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 15:24

\(18^3-3\cdot18^2\cdot8+3\cdot18\cdot8^2-2\)

\(=18^3-3\cdot18^2\cdot8+3\cdot18\cdot8^2-8^3+510\)

\(=10^3+510\)

=1510

Taehyng Kim
Xem chi tiết
Phạm Thị Hoa
13 tháng 12 2017 lúc 21:05

Câu 2: a) 234-117+(-100)+(-234)=[234+(-234)]-117-100=0-117-100=-217

b) -927+1421+930+(-1421)=-927+930+[1421+(-1421)]=-927+930+0=3

Phan Thùy Dương
13 tháng 12 2017 lúc 21:09

Bài 1:

s1=1+(-3)+5+(-7)+............+17

s2=-2+4+(-6)+8+...........+(-18)
\(\Rightarrow\) s1 + s2 = (1-2-3+4)+(5-6-7+8)+...+(13-14-15+16)+17-18

= 0 + 0 + ...+ 0 + (-1)

= -1

Bài 2.

a) 234-117+(-100)+(-234)

= (-234 + 234 ) + [- 117 + (-100)]

= 0 + (-217)

= -217

b) -927+1421+930+(-1421)

= ( -1421 + 1421 ) + ( -927 + 930 )

= 0 + 3

= 3

nguyễn phúc lợi
Xem chi tiết
nguyễn phúc lợi
18 tháng 12 2017 lúc 22:48

bjbbhbh

nguyenanhkiet
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2021 lúc 22:13

\(\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(=\dfrac{a}{ab+a+2}+\dfrac{ab}{abc+ab+a}+\dfrac{2c}{ac+2c+abc}\)

\(=\dfrac{a}{ab+a+2}+\dfrac{ab}{2+ab+a}+\dfrac{2}{a+2+ab}\)

\(=\dfrac{ab+a+2}{ab+a+2}=1\)

Pro No
Xem chi tiết
Bùi Đức Huy Hoàng
26 tháng 1 2022 lúc 21:37

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

Bùi Đức Huy Hoàng
26 tháng 1 2022 lúc 21:36

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

chỉ cần chứng minh được\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+x}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé.

 

 
Bùi Đức Huy Hoàng
26 tháng 1 2022 lúc 21:37

 

 

Cẩm Tiên Châu Thị
Xem chi tiết
Không Tên
23 tháng 12 2017 lúc 21:52

\(\frac{a}{ab+a+2}\)\(\frac{b}{bc+b+1}\)\(\frac{2c}{ac+2c+2}\)

\(\frac{a}{ab+a+2}\)\(\frac{ab}{a\left(bc+b+1\right)}\)\(\frac{2abc}{ab\left(ac+2c+2\right)}\)

\(\frac{a}{ab+a+2}\)\(\frac{ab}{abc+ab+a}\)\(\frac{2abc}{a^2bc+2abc+2ab}\)

\(\frac{a}{ab+a+2}\)\(\frac{ab}{ab+a+2}\)\(\frac{2}{ab+a+2}\)   (vì  abc = 2  )

\(\frac{ab+a+2}{ab+a+2}\)= 1

Cẩm Tiên Châu Thị
25 tháng 12 2017 lúc 14:09

tại sao lại nhân vs a và ab z bn

Đức Dương Minh
24 tháng 5 2018 lúc 19:44

bn ý nhân cả tử và mẫu vs cùng 1 số

Big City Boy
Xem chi tiết
Miinhhoa
27 tháng 12 2020 lúc 14:41

M\(=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

 

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2bc}{b\left(ac+2c+2\right)}\)

M = \(\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{abc+2bc+2b}\)

M=\(\dfrac{1}{b+1+bc}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{2+2bc+2b}\)

M = \(\dfrac{1+b}{b+1+bc}+\dfrac{2bc}{2\left(1+bc+b\right)}\)

M = \(\dfrac{1+b}{b+1+bc}+\dfrac{bc}{b+1+bc}=\dfrac{1+b+bc}{b+1+bc}=1\)

Gun Dead
29 tháng 6 2021 lúc 20:55
Sao ngu vậy bn
Khách vãng lai đã xóa
Nguyễn Ngân Hà
Xem chi tiết
VFF
Xem chi tiết
Đặng Mai Anh
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
28 tháng 4 2019 lúc 9:13

Từ \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\left(a+a+b+b+c\right)\ge\left(1+1+1+1+1\right)^2\)

\(\Rightarrow\frac{2}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{25}{2a+2b+c}\)

Tương tự ta có :

\(\frac{2}{b}+\frac{2}{c}+\frac{1}{a}\ge\frac{25}{2b+2c+a}\)

\(\frac{2}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{25}{2a+b+2c}\)

Cộng từng vế BĐT ta thu được :

\(\frac{5}{a}+\frac{5}{b}+\frac{5}{c}\ge25P\)

\(\Leftrightarrow P\le\frac{5\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{25}=1\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=\frac{3}{5}\)