Các bạn giúp mình nhé .
Giải phương trình
\(\left|x^2+2017\right|=1\)
2. Giải phương trình (Tìm x):
\(\left(x-2\right)^3+\left(5-2x\right)^3=0\)
Các bạn nhớ đừng giải tắt giúp mình nhé! Cảm ơn các bạn nhiều nha!
\(\left(x-2\right)^3+\left(5-2x\right)^3=0\)
\(\Leftrightarrow\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-\left(5x-4x^2-10+4x\right)+25-20x+4x^2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-5x+4x^2+10-4x+25-20x+4x^2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(9x^2-33x+39\right)=0\)
Phân tích tiếp nhé
Bạn ơi, mình chỉ làm đc đến đây rồi ko biết làm tiếp ntn đó
Giải các phương trình sau :
\(\left(\sqrt{1-\sqrt{x}}+\sqrt{1+\sqrt{x}}\right)\left(2+2\sqrt{1-x}\right)\)
\(\sqrt{x}\sqrt{3x-2}=x^2+1\)
Giúp mình với các bạn ơi ! thanks các bn nhó
giai hệ phương trình:
\(\hept{\begin{cases}\left(x+2y-2\right)\left(2x+y\right)=2x\left(5y-2\right)-2y\\x^2-7y=-3\end{cases}}\)
Các bạn ko cần giải mình đưa đề cho bạn mình thôi nhé
Giải phương trình sau:
a) \(\left(x^2-4\right)\left(4x^2-1\right)=\left(x-2\right)\left(16x^2-1\right)\)
b) \(3x^2-10x+8=0\)
Các bạn ai biết làm câu nào thì giúp mình với. Giải ra nha. Cảm ơn nhiều nhé.
b) \(3x^2-10x+8=0\)
\(\Leftrightarrow\left(3x^2-4x\right)-\left(6x-8\right)=0\)
\(\Leftrightarrow x\left(3x-4\right)-2\left(3x-4\right)=0\)
\(\Leftrightarrow\left(3x-4\right)\left(x-2\right)=0\)
đến đây bn tự giải típ nhé. Phương trình tích
Giải và biện luận các phương trình sau:
a) \(\left(m^2-m-6\right)x=m^2-4x+3\)
b) \(\left|m^2x-1\right|=\left|x+m\right|\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP, GIẢI CHI TIẾT GIÚP MÌNH, MÌNH CẢM ƠN
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)
Để phương trình có vô số nghiệm thì m=3
Giải phương trình:
a) \(2x^3=x^2+2x-1\)
b) \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)
Các bạn giúp Ly với nhé, Ly đội ơn ....
a)\(2x^3=x^2+2x-1\Leftrightarrow2x^3-x^2-2x+1=0\Leftrightarrow x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-1\right)=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)\left(x+1\right)=0\)
<=> 2x-1=0 hoặc x-1=0 hoặc x+1=0 <=> x=1/2 hoặc x=1 hoặc x=-1
b)\(x^2-4+\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
b.\(\left(x-2\right)\left(x+2+3-2x\right)=0\) \(\Rightarrow\left(x-2\right).\left(-x+5\right)=0\) \(\Rightarrow\) \(\hept{\begin{cases}x=2\\x=5\end{cases}}\)
Mấy bạn giải giúp mk bài này nhoen!!!
Giải phương trình:
\(x^2\left(x-1\right)^2+x\left(x^2-1\right)=2\left(x+1\right)^2\)
Mong các bạn giúp!!! Mk đang cần gấp!!! Thanks nhiều!!!
Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2
<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0
<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0
<=> x4 - x3 - x2 - 5x - 2 = 0
?
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\end{matrix}\right.\)
Mình đang cần gấp lắm, các bạn giúp mình với. Cảm ơn!
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
giải phương trình
\(\dfrac{x\cdot200}{100}+\dfrac{\left(x-20\right)\cdot300}{100}=\dfrac{33\cdot500}{100}\)
các bạn làm giải giúp mình nhé
mình cảm ơn các bạn!
\(\dfrac{200x}{100}+\dfrac{300\left(x-20\right)}{100}=\dfrac{33.500}{100}\)
=> 200x + 300(x - 20) = 16500
<=> 200x + 300x - 6000 = 16500
<=> 500x = 22500
<=> x = 45
S = {45}
Ta có: \(\dfrac{x\cdot200}{100}+\dfrac{\left(x-20\right)\cdot300}{100}=\dfrac{33\cdot500}{100}\)
\(\Leftrightarrow200x+300x-6000=16500\)
\(\Leftrightarrow500x=22500\)
hay x=45
Vậy: S={45}
\(\left(x+2\right)^2\left(4x+6\right)=0\)
\(3x^2-2x-1=0\)
giải phương trình
giúp mình với các bạn oi
\(a,\left(x+2\right)^2\left(4x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\4x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+2=0\\4x=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{3}{2}\end{cases}}\)
Vậy .............
\(b,3x^2-2x-1=0\)
\(\Leftrightarrow3x^2-3x+x-1=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(x-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)
Vậy ............
\(\left(x+2\right)^2\left(4x+6\right)=0\)
\(< =>\orbr{\begin{cases}\left(x+2\right)^2=0\\4x+6=0\end{cases}< =>\orbr{\begin{cases}x+2=0\\4x=-6\end{cases}< =>\orbr{\begin{cases}x=-2\\x=-\frac{3}{2}\end{cases}}}}\)
Vậy phương trình đã cho có nghiệm \(x=-2;x=-\frac{3}{2}\)
\(3x^2-2x-1=0\)
\(< =>3x^2-3x+x-1=0\)
\(< =>3x\left(x-1\right)+\left(x-1\right)=0\)
\(< =>\left(3x+1\right)\left(x-1\right)=0\)
\(< =>\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}}< =>\orbr{\begin{cases}3x=-1\\x=1\end{cases}}< =>\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)
Vậy phương trình đã cho có nghiệm \(x=-\frac{1}{3};x=1\)
a) \(\left(x+2\right)^2\left(4x+6\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\4x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\4x=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{-3}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;\frac{-3}{2}\right\}\)
b) \(3x^2-2x-1=0\)\(\Leftrightarrow\left(3x^2-3x\right)+\left(x-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\3x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{-1}{3};1\right\}\)