tìm các chữ số a,b thỏa mãn \(\dfrac{1}{3}=\dfrac{1}{a}+\dfrac{1}{b}\)
Cho các số thực dương a, b, c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Tìm GTLN của A = \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\)
Áp dụng bđt Svácxơ, ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Áp dụng, thay vào A, ta có:
\(A\le\text{Σ}\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{3}{2}\)
Dấu "="⇔\(a=b=c=1\)
Tìm các số nguyên a và b thỏa mãn \(\dfrac{1}{a}\)=\(\dfrac{b}{2}\)-\(\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{a}=\dfrac{2b-3}{4}\Rightarrow a=\dfrac{4}{2b-3}\left(b\ne\dfrac{3}{2}\right)\) (1)
\(a\in Z\Rightarrow\left(2b-3\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow b=\left\{-\dfrac{1}{2};\dfrac{1}{2};1;2;\dfrac{5}{2};\dfrac{7}{2}\right\}\) Do \(b\in Z\Rightarrow b=\left\{1;2\right\}\)
Thay vào (1) \(\Rightarrow a=\left\{-4;4\right\}\)
Cho các số thực dương $a, b, c$ thỏa mãn $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3$.
Tìm giá trị lớn nhất của biểu thức $A=\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+b}$.
Bài làm :
Ta có :
\(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)
Dấu "=" xảy ra khi : a=b
Chứng minh tương tự như trên ; ta có :
\(\hept{\begin{cases}\frac{1}{b+c}\text{≤}\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\left(2\right)\\\frac{1}{c+a}\text{≤}\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\left(3\right)\end{cases}}\)
Cộng vế với vế của (1) ; (2) ; (3) ; ta được :
\(A\text{≤}\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\text{=}\frac{3}{2}\)
Dấu "=" xảy ra khi ;
\(\hept{\begin{cases}a=b=c\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\end{cases}}\Leftrightarrow a=b=c=1\)
Vậy Max (A) = 3/2 khi a=b=c=1
quản lí tên kiểu j z
aaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffff
cho 3 số a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=2\) Tìm Max P=abc
1.Xét 2 số thực không âm a,b thỏa mãn a+b≤6. Tìm giá trị lớn nhất của A=a2b(4-a-b)
2. Cho các số a,b,c∈R+ thỏa mãn a+b+c=3.CMR : a+ab+2abc≤\(\dfrac{9}{2}\)
3. Cho các số a,b ∈R+ phân biệt. CMR: (x+y)\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)+\(\dfrac{16}{\left(x-y\right)^2}\)≥12
1.
- Với \(a+b\ge4\Rightarrow A\le0\)
- Với \(a+b< 4\Rightarrow4-a-b>0\)
\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)
\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)
\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)
2.
\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)
\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)
\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)
Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai
Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút
Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)
Nếu câu 3 đề là \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)
Ta có:
\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{16xy}{\left(x-y\right)^2}=\dfrac{x^2+y^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)
\(VT=\dfrac{x^2+y^2-2xy+2xy}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)
\(VT=\dfrac{\left(x-y\right)^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+4\ge2\sqrt{\dfrac{16xy\left(x-y\right)^2}{xy\left(x-y\right)^2}}+4=12\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm min \(P=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)
Đây là bài sử dụng Cô-si ngược dấu đặc trưng:
\(\dfrac{1}{a^2+1}=\dfrac{a^2+1-a^2}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
Tương tự: \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2}\);
\(\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)
Cộng vế:
\(P\ge3-\dfrac{a+b+c}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)
Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:
\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)
Thank you all :)
1.
Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)
Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)
Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)
Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)
Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)
Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)
Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)
\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)
Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng
2.
Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)
\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)
Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)
\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)
\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)
Do \(a;b;c\in\left[0;1\right]\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow ab+c+1\ge a+b+c=2\)
\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)
\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)
\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)
Hoàn toàn tương tự, ta có:
\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)
Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)
\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)
\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
Cho các số thực a,b,c thỏa mãn a>1 , b>\(\dfrac{1}{2}\) , \(c>\dfrac{1}{3}\) và \(\dfrac{1}{a}+\dfrac{2}{2b+1}+\dfrac{3}{3c+2}\ge2\). Tìm GTLN của bt \(P=\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\)