A =\(\dfrac{10^{2017}-2}{10^{2017}+1}\) và B = \(\dfrac{10^{2017}}{10^{2017}+3}\)
Cho \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\) và \(B=\dfrac{10^{2017}+1}{10^{2018}+1}\)
So sánh A và B
10a=10^2017+10/10^2017+1
10b=10^2018+10/10^2018+1
cậu tự so sánh nhé vậy là dễ rồi
Ta có: \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\dfrac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\dfrac{10^{2017}+10}{10^{2017}+1}\)
\(=\dfrac{10^{2017}+1+9}{10^{2017}+1}=\dfrac{10^{2017}+1}{10^{2017}+1}+\dfrac{9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)
Tương tự ta cũng có: \(10B=1+\dfrac{9}{10^{2018}+1}\)
Lại có: \(10^{2017}< 10^{2018}\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow\dfrac{1}{10^{2017}+1}>\dfrac{1}{10^{2018}+1}\Rightarrow\dfrac{9}{10^{2017}+1}>\dfrac{9}{10^{2018}+1}\)
\(\Rightarrow1+\dfrac{9}{10^{2017}+1}>1+\dfrac{9}{10^{2018}+1}\Rightarrow10A>10B\Rightarrow A>B\)
So sánh \(\dfrac{10^{2017}+1}{10^{2016}+1}\) và \(\dfrac{10^{2018}+1}{10^{2017}+1}\)
Đặt :
\(A=\dfrac{10^{2017}+1}{10^{2016}+1}\)
\(B=\dfrac{10^{2018}+1}{10^{2017}+1}\)
Ta thấy :
\(\left\{{}\begin{matrix}A=\dfrac{10^{2017}+1}{10^{2016}+1}>1\\B=\dfrac{10^{2018}+1}{10^{2017}+1}>1\end{matrix}\right.\)
Áp dung tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)
\(B=\dfrac{10^{2018}+1}{10^{2017}+1}>\dfrac{10^{2018}+1+9}{10^{2017}+1+9}=\dfrac{10^{2018}+10}{10^{2017}+10}=\dfrac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2017}+1}{10^{2016}+1}=A\) \(\Leftrightarrow B>A\)
Vậy ......................
Toán khó:
So sánh A và B, biết:
A= \(\dfrac{-21}{10^{2016}}+\dfrac{-12}{10^{2017}}\) và B= \(\dfrac{-12}{10^{2016}}+\dfrac{-21}{10^{2017}}\)
Ta có:A=\(\dfrac{-21}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\)
= \(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-9}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\).
B=\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-21}{10^{2017}}\)
=\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-9}{10^{2017}}\)+ \(\dfrac{-12}{10^{2017}}\)
Khi đó để so sánh A và B ta chỉ cần so sánh:\(\dfrac{-9}{10^{2016}}\)và \(\dfrac{-9}{10^{2017}}\)vì A và B cùng có:
\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\).
Do:\(\dfrac{9}{10^{2016}}\)>\(\dfrac{9}{10^{2017}}\).
Suy ra:\(\dfrac{-9}{10^{2016}}\)<\(\dfrac{-9}{10^{2017}}\).
Từ đó ta suy ra được: A< B
TA CÓ:
A = \(-\dfrac{21}{10^{2016}}+-\dfrac{12}{10^{2017}}=\dfrac{-210+-12}{10^{2017}}=-\dfrac{222}{10^{2017}}\)
B = \(\dfrac{-12}{10^{2016}}+\dfrac{-21}{10^{2017}}=\dfrac{-120+-21}{10^{2017}}=\dfrac{-141}{10^{2017}}>\dfrac{-222}{10^{2017}}\)
=> B>A
So sánh
A = \(\frac{10^{2017}-2}{10^{2017}+1}\) và B = \(\frac{10^{2017}}{10^{2017}+3}\)
Có \(A=\frac{10^{2017}+1-3}{10^{2017}+1}=1-\frac{3}{10^{2017}+1}\)
\(B=\frac{10^{2017}+3-3}{10^{2017}+3}=1-\frac{3}{10^{2017}+3}\)
Có 102017+1<102017+3
=> \(\frac{3}{10^{2017}+1}>\frac{3}{10^{2017}+3}\)
=>A<B
1.So Sánh
a) A=\(\dfrac{11}{2017}+\dfrac{4}{2019}và\) B=\(\dfrac{10}{2017}+\dfrac{10}{2019}\)
b) M=\(\dfrac{1}{5}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{30}+\dfrac{1}{61}+\dfrac{1}{62}và\dfrac{1}{2}\)
c) E=\(\dfrac{4116-14}{10290-35}và\) K=\(\dfrac{2929-101}{2.1919+404}\)
c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)
E = \(\dfrac{4116-14}{10290-35}\)
E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)
E = \(\dfrac{14}{35}\)
K = \(\dfrac{2929-101}{2.1919+404}\)
K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)
K = \(\dfrac{29-1}{34+8}\)
K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)
Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)
\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)
\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)
Vậy E < K
Các câu còn lại tương tự
thực hiện phép tính.
a) b) C= 3+31+32+33+...+3100 c)\(\dfrac{2018.2019-1}{2018^2+2017}\)
\(\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\)
Sửa đề: \(C=1+3^1+3^2+...+3^{100}\)
b) Ta có: \(C=1+3^1+3^2+...+3^{100}\)
\(\Leftrightarrow3\cdot C=3+3^2+...+3^{101}\)
\(\Leftrightarrow C-3\cdot C=1+3+3^2+...+3^{100}-3-3^2-...-3^{100}-3^{101}\)
\(\Leftrightarrow-2\cdot C=1-3^{101}\)
hay \(C=\dfrac{3^{101}-1}{2}\)
b) Ta có: C=1+31+32+...+3100C=1+31+32+...+3100
⇔3⋅C=3+32+...+3101⇔3⋅C=3+32+...+3101
⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101
⇔−2⋅C=1−3101
Bài 1: Tính
A = ( 210 - 1 ) . ( 210 - 2 ) . ( 210 - 3 ) . ... . ( 210 - 2017 )
Bài 2: So sánh
a) 6315 và 3418 b) 20172018 - 20172017 và 20172019 và 20172018
Nhanh nha chiều mai mình cần
So sánh:
a) A = 102016 - 2 / 102017 - 2 và B = 202015 + 1 / 102016 + 1
b) A = 20162017 - 3 / 20162018 - 3 và B = 20162016 + 3 / 20162017 + 3
c) A = 20172016 - 2015 / 20172017 - 2015 và B = 20172015 + 1 / 20172016 + 1
a, chứng minh nếu a/b <c/d thì a/b<a/c+b/d<c/d
b, áp dụng viết 5 phân số >-1/3 và <-1/4
c, so sánh 2 số hữu tỉ
A=\(\dfrac{10^{2017}+1}{10^{2016}+1}\) và B=\(\dfrac{10^{2018}+1}{10^{2017}+1}\)
Bài 1 :
a, Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) \(\left(1\right)\)
Mà \(ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)
b) \(\dfrac{-1}{3}=\dfrac{-16}{48}< \dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}< \dfrac{-12}{48}=\dfrac{-1}{4}\)
Ta thấy :
\(\left\{{}\begin{matrix}A=\dfrac{10^{2017}+1}{10^{2016}+1}>1\\B=\dfrac{10^{2018}+1}{10^{2017}+1}>1\end{matrix}\right.\)
Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{2018}+1}{10^{2017}+1}>\dfrac{10^{2018}+1+9}{10^{2017}+1+9}=\dfrac{10^{2018}+10}{10^{2017}+10}=\dfrac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2017}+1}{10^{2016}+1}=A\)
\(\Leftrightarrow B>A\)
Bài b :
\(-\dfrac{1}{3}=-\dfrac{24}{72}\) và \(-\dfrac{1}{4}=-\dfrac{18}{72}\)
Ta có :
\(-\dfrac{24}{12}< -\dfrac{23}{12}< -\dfrac{22}{12}< -\dfrac{21}{12}< -\dfrac{20}{12}< -\dfrac{19}{12}< -\dfrac{18}{12}\)
Vậy 5 số cần tìm là ...................