Tìm số nguyên n để
\(\dfrac{n+1}{n-2}\)co giá tri la một số nguyên
cho biểu thức B=n-7/n-2 với n thuộc Z a tìm điều kiện n để B la phân số b tìm số nguyên n để B co giá trị là 1 số nguyên
a. điều kiện của n để B là phân số là :
\(n-2\ne0\Leftrightarrow n\ne2\)
b. ta có \(B=\frac{n-7}{n-2}=1-\frac{5}{n-2}\) nguyên khi n-2 là ước của 5
hay \(n-2\in\left\{-5;-1;1;5\right\}\Leftrightarrow n\in\left\{-3;1;3;7\right\}\)
Bài 1:
Tìm số nguyên n để phân số A= \(\dfrac{1}{n+3}\)có giá trị nguyên
Bài 2 : Tìm số nguyên n để phân số B = \(\dfrac{n+4}{n+1}\)có giá trị nguyên
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
Để A nguyên
⇒ \(\left(n+3\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
n+3 1 -2
n -2 -4
\(B=\dfrac{n+3+1}{n+1}=1+\dfrac{3}{n+1}\)
Để B nguyên
\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 1 -1 3 -3
n 0 -2 2 -4
Tìm tất cả cac số nguyên n để
\(\frac{n+1}{n-2}\)\(\frac{n+1}{n-2}\) co gia tri la mot so nguyen
\(\frac{n+1}{n-2}\)nguyên khi n+1 chia hết cho n-2
n+1-n-2 chia hết cho n-2
3 chia hết cho n-2
n-2 thuộc U(3) thuộc 1,-1,3,-3
n-2 1 -1 3 -3
n 3 1 5 -1
vậy n thuộc 3;1;5;-1
Ta có
A= n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2=1+ 3/n-2
Đẻ a có giá trị nguyên thì 3 chia hết cho n-2 nên n-2 thuộc Ư(3)
ta có bảng sau
n-2 | 1 | 3 | -1 | -3 |
n | 3 | 5 | 1 | -1 |
Minh viet nham thanh 2 cai day
n+1/n-2 nha cac bn
Tìm các giá trị số nguyên n để phân số sau có giá tri nguyên
A=3n+4/n-1
C=n^2+3n-1/n-2
Cho biểu thức A= \(\dfrac{2n+1}{n-2}\)
a) Tìm điều kiện của số nguyên n để A là một phân số. Tính giá trị của A khi n= -2.
b)Tìm các số nguyên n sao cho phân số A có giá trị là một số nguyên.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Tìm số nguyên n để A=\(\dfrac{n+1}{n-2}\)có giá trị nguyên, với n\(\ne\)2
để a là số nguyên thì n+1⋮n-2
n-2+3⋮n-2
n-2⋮n-2 ⇒ 3⋮n-2 n-2∈Ư(3)
Ư(3)={1;3;-1;-3}
Vậy n ∈{3;5;1;-1}
Để A là số nguyên thì \(n+1⋮n-2\)
\(\Leftrightarrow n-2+3⋮n-2\)
mà \(n-2⋮n-2\)
nên \(3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)(thỏa ĐK)
Vậy: Để A nguyên thì \(n\in\left\{3;1;5;-1\right\}\)
ta có :n+1/n-2=n-2+3
=>n+1 thuộc Ư(3)
=> n +1 thuộc{1;3;-1;-3}
ta có bảng:
n+1 | 1 | -1 | -3 | 3 |
n | 0 | -2 | -4 | 2 |
ĐK | tm | tm | tm | tm |
Tìm các giá trị nguyên của n để phân số G = \(\dfrac{3n+2}{n-1}\) có giá trị là số nguyên
ta có n-1 ⋮ n-1
⇒3(n-1)⋮ n-1
⇒3n-3⋮ n-1
⇒(3n+2)-(3n-3)⋮ n-1
⇒5⋮ n-1
⇒(n-1)ϵ Ư(5)
n-1 | 1 | 5 | -1 | -5 |
n | 2 | 6 | 0 | -4 |
vậy n={2;6;0;-4}
\(G=\dfrac{3n+2}{n-1}=\dfrac{3n-3+5}{n-1}=3+\dfrac{5}{n-1}\)
Để G là số nguyên thì n - 1 thuộc ước của 5
Lập bảng giá trị => n
Tìm số nguyên n để phân số\(\dfrac{n+4}{n+1}\)nhân giá trị nguyên
Để phân số này nguyên thì \(n+4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-2;2;-4\right\}\)
Để n+4/n+1 nhận giá trị nguyên
thì (n+4) chia hết cho (n+1)
(n+1+3) chia hết cho (n+1)
Vì (n+1) chia hết cho (n+1) nên 3 chia hết cho (n+1)
=>(n+1) thuộc Ư(3)={1;-1;3;-3)
+)n+1=1 thì n=0
+)n+1=-1 thì n=-2
+)n+1=3 thì n=2
+)n+1=-3 thì n=-4
vậy n={0;-2;2;-4}
a)Tìm tất cả các số nguyên n để phân số n+1/n-2 có giá trị là một số nguyên
b)
Tìm số nguyên n để phân số 4n+5/2n-1 có giá trị là một số nguyên
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}