để a là số nguyên thì n+1⋮n-2
n-2+3⋮n-2
n-2⋮n-2 ⇒ 3⋮n-2 n-2∈Ư(3)
Ư(3)={1;3;-1;-3}
Vậy n ∈{3;5;1;-1}
Để A là số nguyên thì \(n+1⋮n-2\)
\(\Leftrightarrow n-2+3⋮n-2\)
mà \(n-2⋮n-2\)
nên \(3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)(thỏa ĐK)
Vậy: Để A nguyên thì \(n\in\left\{3;1;5;-1\right\}\)
ta có :n+1/n-2=n-2+3
=>n+1 thuộc Ư(3)
=> n +1 thuộc{1;3;-1;-3}
ta có bảng:
n+1 | 1 | -1 | -3 | 3 |
n | 0 | -2 | -4 | 2 |
ĐK | tm | tm | tm | tm |