Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Dương Ngọc Minh
Xem chi tiết

a: ĐKXĐ: n<>1

Để \(\frac{2n-1}{n-1}\) là số nguyên thì 2n-1⋮n-1

=>2n-2+1⋮n-1

=>1⋮n-1

=>n-1∈{1;-1}

=>n∈{2;0}

b: ĐKXĐ: n<>-1

Để \(\frac{3n+5}{n+1}\) là số nguyên thì 3n+5⋮n+1

=>3n+3+2⋮n+1

=>2⋮n+1

=>n+1∈{1;-1;2;-2}

=>n∈{0;-2;1;-3}

c: ĐKXĐ: n<>-3

Để \(\frac{4n-2}{n+3}\) là số nguyên thì 4n-2⋮n+3

=>4n+12-14⋮n+3

=>-14⋮n+3

=>n+3∈{1;-1;2;-2;7;-7;14;-14}

=>n∈{-2;-4;-1;-5;4;-10;11;-17}

d: ĐKXĐ: n<>-4/3

Để \(\frac{6n-4}{3n+4}\) là số nguyên thì 6n-4⋮3n+4

=>6n+8-12⋮3n+4

=>-12⋮3n+4

=>3n+4∈{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

=>3n∈{-3;-5;-2;-6;-1;-7;0;-8;2;-10;8;-16}

=>n∈{\(-1;-\frac53;-\frac23;-2;-\frac13;-\frac73;0;-\frac83;\frac23;-\frac{10}{3};\frac83;-\frac{16}{3}\) }

mà n là số nguyên

nên n∈{-1;-2;0}

e: ĐKXĐ: n<>1/2

Để \(\frac{n+3}{2n-1}\) là số nguyên thì n+3⋮2n-1

=>2n+6⋮2n-1

=>2n-1+7⋮2n-1

=>7⋮2n-1

=>2n-1∈{1;-1;7;-7}

=>2n∈{2;0;8;-6}

=>n∈{1;0;4;-3}

f: \(\frac{6n-4}{3n-2}=\frac{2\left(3n-2\right)}{3n-2}=2\) là số nguyên với mọi n nguyên

g: ĐKXĐ: n<>1/3

Để \(\frac{2n+3}{3n-1}\) là số nguyên thì 2n+3⋮3n-1

=>6n+9⋮3n-1

=>6n-2+11⋮3n-1

=>11⋮3n-1

=>3n-1∈{1;-1;11;-11}

=>3n∈{2;0;12;-10}

=>n∈{2/3;0;4;-10/3}

mà n nguyên

nên n∈{0;4}

Nguyen Tuan HUng
Xem chi tiết
Nguyen Tuan HUng
16 tháng 4 2017 lúc 10:59

ai giúp mik với

títtt
Xem chi tiết
Nguyễn Đức Trí
14 tháng 10 2023 lúc 9:44

1) \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(3n+5-\dfrac{3}{n}\right)}{-n\left(1-\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n+5-\dfrac{3}{n}}{-\left(1-\dfrac{5}{n}\right)}\)

\(=\left[{}\begin{matrix}-\infty\left(n\rightarrow+\infty\right)\\+\infty\left(n\rightarrow-\infty\right)\end{matrix}\right.\)

Bài 2,3 tương tự, bạn tự làm nhé!

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 19:00

1: \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}=\lim\limits_{n\rightarrow\infty}\dfrac{7n^2-4}{n-5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(7-\dfrac{4}{n^2}\right)}{n\left(1-\dfrac{5}{n}\right)}=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(7-\dfrac{4}{n^2}\right)}{1-\dfrac{5}{n}}\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{7-\dfrac{4}{n^2}}{1-\dfrac{5}{n}}=\dfrac{7}{1}=7>0\end{matrix}\right.\)

2: 

\(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-3+\dfrac{2}{n^2}\right)}{n\left(1-\dfrac{2}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(-3+\dfrac{2}{n^2}\right)}{1-\dfrac{2}{n}}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{-3+\dfrac{2}{n^2}}{1-\dfrac{2}{n}}=-\dfrac{3}{1}=-3< 0\end{matrix}\right.\)

Ta Chia Tay Đi
Xem chi tiết
Nguyễn Thanh Hằng
10 tháng 10 2017 lúc 11:03

Đặt :

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+.........+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(\Leftrightarrow3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+............+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\)

\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+........+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\)

\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{3n+2}\)

 Fairy Tail
10 tháng 10 2017 lúc 15:14

@Akai Haruma em không hiểu tại sao bài kia chị lại tick cho bạn đó ạ,đề nói chứng minh,mak bạn đó đã làm hết đâu:

\(VT=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n-1}+\dfrac{1}{3n+2}\right)\)

\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)

\(VT=\dfrac{1}{6}-\dfrac{1}{9n+6}\)

\(VT=\dfrac{9n+6}{54n+36}-\dfrac{6}{54n+36}\)

\(VT=\dfrac{9n+6-6}{54n+36}=\dfrac{9n}{54n+36}=\dfrac{9n}{9\left(6n+4\right)}=\dfrac{n}{6n+4}=VP\left(đpcm\right)\)

Long Nguyễn
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Minh Hiếu
11 tháng 2 2022 lúc 5:22

\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)

\(=n\times\dfrac{2}{3}=\)+∞

Huỳnh phi vật thể
10 tháng 2 2022 lúc 22:42

A, 7.b dương vô cực

Minh Hiếu
11 tháng 2 2022 lúc 5:15

\(a,lim\dfrac{7n^2-3n}{n^2+2}\)

\(=lim\dfrac{7-\dfrac{3}{n}}{1+\dfrac{2}{n^2}}\)

\(=\dfrac{7-0}{1+0}=\dfrac{7}{1}=7\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 13:43

1: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n\left(-1+\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\left[n\left(\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}\right)\right]\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}=\dfrac{3+0-0}{-1+0}=\dfrac{3}{-1}=-3< 0\end{matrix}\right.\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{7n^2-4}{n-5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(7-\dfrac{4}{n^2}\right)}{n\left(1-\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\left[n\cdot\dfrac{\left(7-\dfrac{4}{n^2}\right)}{1-\dfrac{5}{n}}\right]\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{7-\dfrac{4}{n^2}}{1-\dfrac{5}{n}}=\dfrac{7-0}{1-0}=7>0\end{matrix}\right.\)

Ruby
Xem chi tiết
Isa Lana
2 tháng 7 2018 lúc 8:58

\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{3n+2}{6n+4}-\dfrac{2}{6n+4}\right)\)
\(=\dfrac{1}{3}.\dfrac{3n}{6n+4}\)
\(=\dfrac{n}{6n+4}\) ( đpcm )
Vậy...