Tìm n biết:
\(\dfrac{7n-4}{3n}-20\)
\(A=\dfrac{6n-9}{4}\)
\(\dfrac{n^2-4}{n^{ }2-3n+2}\)
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
a: ĐKXĐ: n<>1
Để \(\frac{2n-1}{n-1}\) là số nguyên thì 2n-1⋮n-1
=>2n-2+1⋮n-1
=>1⋮n-1
=>n-1∈{1;-1}
=>n∈{2;0}
b: ĐKXĐ: n<>-1
Để \(\frac{3n+5}{n+1}\) là số nguyên thì 3n+5⋮n+1
=>3n+3+2⋮n+1
=>2⋮n+1
=>n+1∈{1;-1;2;-2}
=>n∈{0;-2;1;-3}
c: ĐKXĐ: n<>-3
Để \(\frac{4n-2}{n+3}\) là số nguyên thì 4n-2⋮n+3
=>4n+12-14⋮n+3
=>-14⋮n+3
=>n+3∈{1;-1;2;-2;7;-7;14;-14}
=>n∈{-2;-4;-1;-5;4;-10;11;-17}
d: ĐKXĐ: n<>-4/3
Để \(\frac{6n-4}{3n+4}\) là số nguyên thì 6n-4⋮3n+4
=>6n+8-12⋮3n+4
=>-12⋮3n+4
=>3n+4∈{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>3n∈{-3;-5;-2;-6;-1;-7;0;-8;2;-10;8;-16}
=>n∈{\(-1;-\frac53;-\frac23;-2;-\frac13;-\frac73;0;-\frac83;\frac23;-\frac{10}{3};\frac83;-\frac{16}{3}\) }
mà n là số nguyên
nên n∈{-1;-2;0}
e: ĐKXĐ: n<>1/2
Để \(\frac{n+3}{2n-1}\) là số nguyên thì n+3⋮2n-1
=>2n+6⋮2n-1
=>2n-1+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
f: \(\frac{6n-4}{3n-2}=\frac{2\left(3n-2\right)}{3n-2}=2\) là số nguyên với mọi n nguyên
g: ĐKXĐ: n<>1/3
Để \(\frac{2n+3}{3n-1}\) là số nguyên thì 2n+3⋮3n-1
=>6n+9⋮3n-1
=>6n-2+11⋮3n-1
=>11⋮3n-1
=>3n-1∈{1;-1;11;-11}
=>3n∈{2;0;12;-10}
=>n∈{2/3;0;4;-10/3}
mà n nguyên
nên n∈{0;4}
Các bạn giúp mình với :
BÀi 1 :Tìm n Bài 2:Tìm x với kết quả lớn nhất
\(a.\dfrac{7n-4}{3n}-20\) a.\(\dfrac{8}{n^2+4}\)
b.\(A=\dfrac{6n-9}{4}\) Biết A<3 b.\(\dfrac{-3x^2}{6x}\)
c.\(\dfrac{n^2-4}{n^2-3n+2}\)
tính
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)
3) \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}\)
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(3n+5-\dfrac{3}{n}\right)}{-n\left(1-\dfrac{5}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n+5-\dfrac{3}{n}}{-\left(1-\dfrac{5}{n}\right)}\)
\(=\left[{}\begin{matrix}-\infty\left(n\rightarrow+\infty\right)\\+\infty\left(n\rightarrow-\infty\right)\end{matrix}\right.\)
Bài 2,3 tương tự, bạn tự làm nhé!
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}\)
1: \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}=\lim\limits_{n\rightarrow\infty}\dfrac{7n^2-4}{n-5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(7-\dfrac{4}{n^2}\right)}{n\left(1-\dfrac{5}{n}\right)}=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(7-\dfrac{4}{n^2}\right)}{1-\dfrac{5}{n}}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{7-\dfrac{4}{n^2}}{1-\dfrac{5}{n}}=\dfrac{7}{1}=7>0\end{matrix}\right.\)
2:
\(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-3+\dfrac{2}{n^2}\right)}{n\left(1-\dfrac{2}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(-3+\dfrac{2}{n^2}\right)}{1-\dfrac{2}{n}}\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{-3+\dfrac{2}{n^2}}{1-\dfrac{2}{n}}=-\dfrac{3}{1}=-3< 0\end{matrix}\right.\)
Chứng minh :
a, \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{n}{6n+4}\)
Đặt :
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+.........+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+............+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+........+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{3n+2}\)
@Akai Haruma em không hiểu tại sao bài kia chị lại tick cho bạn đó ạ,đề nói chứng minh,mak bạn đó đã làm hết đâu:
\(VT=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n-1}+\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{6}-\dfrac{1}{9n+6}\)
\(VT=\dfrac{9n+6}{54n+36}-\dfrac{6}{54n+36}\)
\(VT=\dfrac{9n+6-6}{54n+36}=\dfrac{9n}{54n+36}=\dfrac{9n}{9\left(6n+4\right)}=\dfrac{n}{6n+4}=VP\left(đpcm\right)\)
cho mọi số nguyên dương n>2 cmr \(\dfrac{1}{3}\)\(\dfrac{ }{ }\). \(\dfrac{4}{6}.\dfrac{7}{9}.\dfrac{10}{12}........\dfrac{3n-2}{3n}.\dfrac{3n+1}{3n+3}< \dfrac{1}{3\sqrt{n+1}}\)
Tìm các giới hạn sau:
\(a,lim\dfrac{7n^2-3n}{n^2+2}\)
\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)
\(=n\times\dfrac{2}{3}=\)+∞
\(a,lim\dfrac{7n^2-3n}{n^2+2}\)
\(=lim\dfrac{7-\dfrac{3}{n}}{1+\dfrac{2}{n^2}}\)
\(=\dfrac{7-0}{1+0}=\dfrac{7}{1}=7\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)
1: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n\left(-1+\dfrac{5}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\left[n\left(\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}\right)\right]\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}=\dfrac{3+0-0}{-1+0}=\dfrac{3}{-1}=-3< 0\end{matrix}\right.\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{7n^2-4}{n-5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(7-\dfrac{4}{n^2}\right)}{n\left(1-\dfrac{5}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\left[n\cdot\dfrac{\left(7-\dfrac{4}{n^2}\right)}{1-\dfrac{5}{n}}\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{7-\dfrac{4}{n^2}}{1-\dfrac{5}{n}}=\dfrac{7-0}{1-0}=7>0\end{matrix}\right.\)
chứng minh rằng với mọi số tự nhiên n khác 0 ta đều có:
a) \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+....+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{n}{6n+4}\)
\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{3n+2}{6n+4}-\dfrac{2}{6n+4}\right)\)
\(=\dfrac{1}{3}.\dfrac{3n}{6n+4}\)
\(=\dfrac{n}{6n+4}\) ( đpcm )
Vậy...