Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Cao Đô
Xem chi tiết
Phạm Thành Đông
8 tháng 4 2021 lúc 15:25

a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)

\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)

\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).

Dấu bằng xảy ra\(\Leftrightarrow x=y\).

Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).

Khách vãng lai đã xóa
Phạm Thành Đông
8 tháng 4 2021 lúc 15:58

Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)

Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)

Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)

Lúc đó:

\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)

\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)

Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)

Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)

\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)

\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)

\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)

\(\Leftrightarrow A=B\)

Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)

\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)

Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)

\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow x=y\)

Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:

\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)

Chứng minh tương tự, ta được:

\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)

Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)

\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)

Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)

\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)

\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)

\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)

\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)

Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).

Khách vãng lai đã xóa
Nguyễn Thị Phương Trang
29 tháng 6 2021 lúc 16:01

undefined

Khách vãng lai đã xóa
Nguyễn Hoàng Sinh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2022 lúc 23:46

Đặt vế trái của BĐT cần chứng minh là P

Ta có:

\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)

\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2022 lúc 5:57

Đặt \(\left(\sqrt{x};2\sqrt{y};3\sqrt{z}\right)=\left(a;b;c\right)\Rightarrow a;b;c\ge0\)

Ta có:

\(\dfrac{2}{a+b+c}-\dfrac{1}{ab+bc+ca}\le\dfrac{2}{a+b+c}-\dfrac{3}{\left(a+b+c\right)^2}=-3\left(\dfrac{1}{a+b+c}-\dfrac{1}{3}\right)^2+\dfrac{1}{3}\le\dfrac{1}{3}\)

Đẳng thức xảy ra khi và chỉ khi: \(a=b=c=1\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{4}\\z=\dfrac{1}{9}\end{matrix}\right.\)

Nguyễn Hiếu
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 22:09

Đề bài chắc chắn là có vấn đề

Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)

Nguyễn Việt Lâm
18 tháng 4 2021 lúc 22:37

Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra

Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

Làm tương tự với 2 số hạng còn lại, sau đó cộng vế

Nhưng đẳng thức không xảy ra.

phạm kim liên
Xem chi tiết
Edogawa Conan
16 tháng 8 2021 lúc 16:49

Ta có:\(\sqrt{\dfrac{yz}{x^2+2017}}=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\)

  \(=\sqrt{\dfrac{y}{x+y}\cdot\dfrac{z}{x+z}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\)

Tương tự ta có:\(\sqrt{\dfrac{zx}{y^2+2017}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{z}{y+z}}{2}\)

                         \(\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)

Cộng vế với vế ta có:

\(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\)

\(\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}+\dfrac{z}{z+y}+\dfrac{x}{x+y}+\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)

\(=\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}}{2}=\dfrac{1+1+1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{2017}}{\sqrt{3}}\)

dinh huong
Xem chi tiết
mai  love N
Xem chi tiết
Trần Hùng Minh
1 tháng 2 2023 lúc 16:22

Áp dụng BĐT cô si với ba số không âm ta có :

1(�+1)2+�+18+�+18≥31643=34

=> 1(�+1)2≥34−�+14 (1)

Dấu '' = '' xảy ra khi x = 1 

CM tương tự ra có " 1(�+1)2≥34−�+14(2) ; 1(�+1)2≥34−�+14 (3)

Dấu ''= '' xảy ra khi y = 1 ; z = 1 

Từ (1) (2) và (3) => 1(�+1)2+1(�+1)2+1(�+1)2≥34⋅3−�+�+�+34≥94−3���3+34=94−64=34

BĐT được chứng minh 

Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1

:()

Trúc Giang
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 17:49

\(a^2+b^2=\left(a+b-c\right)^2=a^2+\left(b-c\right)^2+2a\left(b-c\right)=b^2+\left(a-c\right)^2+2b\left(a-c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}b^2=\left(b-c\right)^2+2a\left(b-c\right)\\a^2=\left(a-c\right)^2+2b\left(a-c\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)

\(=\dfrac{\left(a-c\right)\left(a+b-c\right)}{\left(b-c\right)\left(b+a-c\right)}=\dfrac{a-c}{b-c}\) (đpcm)

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 9:05

Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)

\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)

Dấu = xảy ra khi x=2

=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)

Đặt t=(x+y+z)^2(t>=36)

=>P>=2t/t-6

Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)

\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)

=>f(t) đồng biến

=>f(t)>=f(36)=6/7

=>P>=12/7

Dấu = xảy ra khi x=y=z=2