\(\sqrt{3}Cos5x-2Sin3xCos2x-Sinx=0\)
Giải pt
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(sinx-\sqrt{3}cosx=2sin5x\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
\(sinx+cosxsin2x+\sqrt{3}cos3x=2\left(cos4x-sin^3x\right)\)
\(tanx-3cotx=4\left(sinx+\sqrt{3}cosx\right)\)
1.
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)
2.
\(sinx-\sqrt{3}cosx=2sin5\text{}x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)
\(\dfrac{\sqrt{2}\left(sinx-cox\right)^2\left(1+2sin2x\right)}{sin3x+sin5x}=1-tanx\)
\(sin\left(2x-\dfrac{\pi}{4}\right)cos2x-2\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=0\)
(sin2x+cos2x)cosx+2cos2x -sinx=0
sinx + cosxsin2x + \(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
1:\(\left(sin\dfrac{x}{2}+cos\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2\)
2: \(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
3: \(4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\)
4:\(cos5x-2sin3xcos2x-sinx=0\)
giải phương trình
1.\(2sin15x+\sqrt{3}cos5x+sin5x=0\)
2.\(\left(cos2x-\sqrt{3}sin2x\right)-\sqrt{3}sinx-cosx+4=0\)
3.\(cos7x-sin5x=\sqrt{3}\left(cos5x-sin7x\right)\)
4.\(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)
1.
\(\Leftrightarrow sin5x+\sqrt{3}cos5x=-2sin15x\)
\(\Leftrightarrow\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x=-sin15x\)
\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(-15x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=-15x+k2\pi\\5x+\frac{\pi}{3}=\pi+15x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{60}+\frac{k\pi}{10}\\x=-\frac{\pi}{15}+\frac{k\pi}{5}\end{matrix}\right.\)
2.
\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=2\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)
Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) với mọi x
\(\Rightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)\le2\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)
3.
\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)
\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)
Giải phương trình
1, cos2x + cos6x + cos3x + cos5x = 0
2, sinx + sin2x + sin3x = 0
3, sinx + sin2x + sin3x + sin4x = 0
\( 2)\sin x + \sin 2x + \sin 3x = 0\\ \Leftrightarrow 2\sin 2x.\cos x + \sin 2x = 0\\ \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sin 2x = 0\\ 2\cos x + 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} 2x = k\pi \\ \cos x = \dfrac{{ - 1}}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{k\pi }}{2}\\ x = \pm \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z} } \right) \)
\( 3)\sin x + \sin 2x + \sin 3x + \sin 4x = 0\\ \Leftrightarrow \left( {\sin x + \sin 4x} \right) + \left( {\sin 2x + \sin 3x} \right) = 0\\ \Leftrightarrow 2\sin \dfrac{{5x}}{2}.\cos \dfrac{{3x}}{2} + 2\sin \dfrac{{5x}}{2}.\cos \dfrac{x}{2} = 0\\ \Leftrightarrow \sin \dfrac{{5x}}{2}.\left( {\cos \dfrac{{3x}}{2} + \cos \dfrac{x}{2}} \right) = 0\\ \Leftrightarrow \sin \dfrac{{5x}}{2}.2\cos x.\cos \dfrac{x}{2} = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sin \dfrac{{5x}}{2} = 0\\ 2\cos x = 0\\ \cos \dfrac{x}{2} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{2k\pi }}{5}\\ x = \dfrac{\pi }{2} + k\pi \\ x = \pi + 2k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)
giải phương trình đối với sin x và cosx
1) 3sinx-4cosx=5
2) \(\sqrt{3}cos2x+sin2x+2sin\left(2x-\frac{\pi}{6}\right)=2\sqrt{2}\)
3) \(cosx+\sqrt{3}sinx+2cos\left(2x+\frac{\pi}{3}\right)=0\)
4) \(2cos\left(2x+\frac{\pi}{6}\right)+4sinxcosx-1=0\)
5) \(\sqrt{3}cos5x-2sin3x.cos2x-sinx=0\)
giải các pt
a) \(\sqrt{3}sin5x-cos5x+2=0\)
b) \(sinx-\sqrt{3}cosx=1\)
c) \(sin3x-cos3x=\sqrt{\frac{3}{2}}\)
d) \(2sinx.cosx+cos2x=1\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin5x-\frac{1}{2}cos5x=-1\)
\(\Leftrightarrow sin\left(5x-\frac{\pi}{6}\right)=-1\)
\(\Leftrightarrow5x-\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{15}+\frac{k2\pi}{5}\)
b/
\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{\sqrt{2}}\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx.cosx+1-2sin^2x=1\)
\(\Leftrightarrow2sinx\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
giải pt: Sinx+cos5x=0
1,Cho tam giác ABC gọi G là trọng tâm.Đường thẳng d không cắt tam giác ABC.Gọi A',B',C',G' lần lượt là hình chiếu của A,B,C,G trên đường thẳng d.Chứng minh rằng GG'=(AA'+BB'+CC')/3
Giải PT
a1) \(\dfrac{\left(1-2\sin x\right)\cos x}{\left(1+2\sin x\right)\left(1-\sin x\right)}=\sqrt{3}\)
a2) \(2\sin17x+\sqrt{3}\cos5x+\sin5x=0\)
a3) \(\)\(\cos7x-\sin5x=\sqrt{3}\left(\cos5x-\sin7x\right)\)
a4) \(\sqrt{3}\cos5x-2\sin3x\cos2x-\sin x=0\)
a5) \(\tan x+\cot x=2\left(\sin2x+\cos2x\right)\)