Tính A biết \(A=\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\)
Tính A biết \(A=\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\)
Yêu cầu bài toán chỉ đơn thuần tính cái này thôi à em!
Tính: \(\left(\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1001}\right)\)
Tính: \(\left(\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1001}\right)\)
Tính nhanh : \(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{998}.\dfrac{1}{999}+\dfrac{1}{999}.\dfrac{1}{1000}\)
\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{999}.\dfrac{1}{1000}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\\ =1-\dfrac{1}{1000}=\dfrac{999}{1000}\)
ta có
1/1.1/2=1-1/2
1/2.1/3=1/2-1/3
1/3.1/4=1/3-1/4
............
1/999.1/1000=1/999-1/1000
Từ đó suy ra
1/1.1/2+1/2-1/3+1/3+.......+1/998.1/999+1/999.1/1000
=1/1-1/2+1/2-1/3+1/3-.....+1/998-1/999+1/999-1/1000
=1-1/1000
=1000/1000-1/1000
=999/1000
nhớ like bạn nhé
tính: \(x=\sqrt{1+999^2+\dfrac{999^2}{1000^2}}+\dfrac{999}{1000}\)
Áp dụng \(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\) ta có:
\(x=\sqrt{1+\dfrac{1}{\left(\dfrac{1}{999}\right)^2}+\dfrac{1}{\left(\dfrac{1}{999}+1\right)^2}}+\dfrac{999}{1000}=1+\dfrac{1}{\dfrac{1}{999}}-\dfrac{1}{\dfrac{1}{999}+1}+\dfrac{999}{1000}=1+999-\dfrac{999}{1000}+\dfrac{999}{1000}=1000\)
Tính
P= \(\sqrt{1+999^2+\dfrac{999^2}{1000^2}}\)+\(\dfrac{999}{1000}\)
\(P=\sqrt{1+999^2+\dfrac{999^2}{1000^2}+\dfrac{999}{1000}}\)
\(\Leftrightarrow\)\(\sqrt{\dfrac{1999}{1000}+999^2+\dfrac{999^2}{1000^2}}\)
D=\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)
E=\(\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}....\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}\)
Ta có: D\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2004}{2005}=\dfrac{1.2.3...2004}{2.3.4...2005}=\dfrac{1}{2005}\)
Ta có: \(E=\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}...\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}=\dfrac{\left(1.2.3.4...1000\right)\left(1.2.3.4...1000\right)}{\left(1.2.3....1000\right)\left(3.4.5....1001\right)}=\dfrac{2}{1001}\)
Cho \(A=\dfrac{9}{10!}+\dfrac{10}{11!}+......+\dfrac{999}{1000!}\)
C/m: \(A< \dfrac{1}{9!}\)
(1+2+3+4+5+6+...+999+1000)×(0.75×0.4−\(\dfrac{3}{4}\)×0.4)
\(=\left(1+2+3+...+1000\right)\times\left[\left(0,75-\dfrac{3}{4}\right)\cdot0,4\right]\)
\(=\left(1+2+3+...+1000\right)\times0=0\)