Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thịnh Nguyễn Đức
Xem chi tiết
pham trung thanh
10 tháng 10 2017 lúc 19:02

\(2x^6+y^2-2x^3y=320\)

\(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)

\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)

\(\Rightarrow x^6\le320\)

\(x\in Z\)

\(\Rightarrow x^6=64;1;0\)

Xét từng trường hợp, bạn tìm ra được\(x^6=64\)thõa mãn

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

+ x=2

=>y=-8;24

+x=-2

=>y=8;-24

Vậy\(\left(x;y\right)=\left(2;-8\right);\left(2;24\right);\left(-2;8\right);\left(-2;-24\right)\)

Phan Thị Hà Vy
Xem chi tiết
Trần Anh
13 tháng 8 2018 lúc 9:16

\(2x^6+y^2-2x^3y=320\)  \(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)\(\Leftrightarrow\) \(\left(x^3\right)^2+\left(x^3-y\right)^2=320\)

Vì \(\left(x^3\right)^2\ge0\)và  \(\left(x^3-y\right)^2\ge0\). Đồng thời \(\left(x^3\right)^2\)và  \(\left(x^3-y\right)^2\)cũng là hai số chính phương nên :

(  phân tích 320 thành tổng của 2 số chính phương ) 

\(\left(x^3\right)^2+\left(x^3-y\right)^2=8^2+16^2\) ( Do \(\sqrt[3]{16}\)không là 1 số nguyên nên \(x^3=8\))

Vậy ta có 4 trường hợp : 

+) Trường hợp 1: 

\(\hept{\begin{cases}\left(x^3\right)^2=8^2\\\left(x^3-y\right)^2=16^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3=8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-8\end{cases}}}\)( TM )

+) Trường hợp 2:

\(\hept{\begin{cases}x^3=8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=24\end{cases}}\left(TM\right)}\)

+) Trường hợp 3:

\(\hept{\begin{cases}x^3=-8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-24\end{cases}\left(TM\right)}}\)

+) Trường hợp 4 :

\(\hept{\begin{cases}x^3=-8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=8\end{cases}\left(TM\right)}}\)

Vậy phương trình có 4 cặp nghiệm (x;y) nguyên là (-2;8)  ,   (-2;-24 )   ,   (2;-8)    ;   ( 2; 24 )

Hoàng Đức Thịnh
Xem chi tiết
Võ Thị Quỳnh Giang
16 tháng 10 2017 lúc 22:13

ta có: \(2x^6+y^2-2x^3y=320\)

\(\Rightarrow\left(x^3-y\right)^2=320-x^6\)

mà \(\left(x^3-y\right)^2\ge0\)

nên \(320-x^6\ge0\Rightarrow x^6\le320\)

=>\(x^6\in\left\{0;1;64\right\}\)

với \(x^6=0\Rightarrow x=0\Rightarrow y^2=320\) loại vì 320 ko phải là số chính  phương

với \(x^6=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}\left(1-y\right)^2=319\\\left(-1-y\right)^2=319\end{cases}}}\)

loại vì 319  ko phải là số chính phương

với \(x^6=64\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}\left(8-y\right)^2=256\\\left(-8-y\right)^2=256\end{cases}}}\)

khi \(\left(8-y\right)^2=256\Rightarrow\orbr{\begin{cases}8-y=16\\8-y=-16\end{cases}\Rightarrow\orbr{\begin{cases}y=-8\\y=24\end{cases}}}\)

khi \(\left(-8-y\right)^2=256\Rightarrow\orbr{\begin{cases}-8-y=16\\-8-y=-16\end{cases}\Rightarrow\orbr{\begin{cases}y=-24\\y=8\end{cases}}}\)

Vậy nghiệm của pt là : (x;y)={ (2;-8);(2;24);(-2;-24);(-2;8)}

Angel
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
26 tháng 1 2022 lúc 15:08

PT <=> \(\left(y+2\right)x^2=y^2-1\)

- Nếu y = -2 <=> \(\left(-2\right)^2-1=0\) (vô lí)

=> \(y\ne-2\)

PT <=> \(x^2=\dfrac{y^2-1}{y+2}\)

Có \(x\in Z\Rightarrow x^2\in Z\)

=> \(\dfrac{y^2-1}{y+2}\in Z\)

=> \(y^2-1⋮y+2\)

=> \(y\left(y+2\right)-2\left(y+2\right)+3⋮y+2\)

=> \(3⋮y+2\)

Ta có bảng

y+213-1-3
y-11-3-5
x0 (Tm)0 (Tm)\(\varnothing\)\(\varnothing\)

KL: Vậy phương trình có tập nghiệm\(\left(x;y\right)=\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

 

Trần Anh Hoàng
Xem chi tiết
Hồ Lê Thiên Đức
15 tháng 1 2022 lúc 23:51

Ta có x+ x+ 1 = y2

Lại có x+ 2x+ 1 ≥ x+ x+ 1 hay (x2 + 1)2 ≥ x+ x+ 1

=> (x2 + 1)2 ≥ y(1)

Lại có x+ x+ 1 > x4 => y2 > x4 (2)

Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2

<=> y2 = (x2 + 1)2 = x+ 2x+ 1

Mà x+ x+ 1 = y=> x+ 2x+ 1 = x+ x+ 1

<=> x2 = 0 <=> x = 0

Thay vào, ta có 1 = y<=> y ∈ {-1,1}

Vậy ...

 

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 21:13

\(C=\left(x^2-2xy+y^2\right)\left(x^2+y^2\right)-2x^3y-3x^3y^2+2xy^3\)

\(=\left(x^2+y^2\right)^2-2xy\left(x^2+y^2\right)-xy\left(2x^2+3x^2y+2y^2\right)\)

\(=\left(x^2+y^2\right)^2-xy\left(2x^2+2y^2+2x^2+3x^2y+2y^2\right)\)

\(=\left(x^2+y^2\right)^2-xy\left(4x^2+3x^2y+4y^2\right)\)

 

 

Trịnh Thiên Mỹ
26 tháng 9 2021 lúc 21:18

undefined

Adu Darkwa
Xem chi tiết
Akai Haruma
6 tháng 3 2021 lúc 23:13

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

Akai Haruma
6 tháng 3 2021 lúc 23:13

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

Lâm hà thu
Xem chi tiết
Ben 10
14 tháng 9 2017 lúc 21:09

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

Nguyễn Văn Thành
14 tháng 9 2017 lúc 21:10

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

hoàng long Lê thái
Xem chi tiết
Vũ Trần Giang
25 tháng 3 2023 lúc 21:23

+4xy vào mỗi vế
=> nhóm VP = (xy+2)^2; VT = (2x+y)^2 + 3x + 3y
=> VT là SCP 
kẹp:

(2x+y)^2< (2x+y)^2 + 3x + 3y<(2x+y+2)^2(do x,y nguyên dương)
=> (2x+y)^2 + 3x + 3y = (2x+y+1)^2
=> y = x+1 
thay vào 

x2y2+4=4x2+y2+3x+3y

r giải pt có x,y

tự làm nốt