Giải phương trình :
\(\sin^2x-\sin x=0\)
Giải phương trình sau:
\(\sin\left(x\right)+\sin\left(2x\right)+4\sin\left(3x\right)+\sin\left(4x\right)+\sin\left(5x\right)=0\)
(sinx + sin5x) + (sin2x + sin4x) + 4sin3x = 0
⇔ 2sin3x . cos2x + 2sin3x . cosx + 4sin3x = 0
⇔ 2sin3x (cos2x + cosx + 2sin3x) = 0
⇔ \(\left[{}\begin{matrix}sin3x=0\left(1\right)\\cos2x+cosx+2sin3x=0\left(2\right)\end{matrix}\right.\)
(1) ⇔ ...
(2) ⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}+4sin\dfrac{3x}{2}.cos\dfrac{3x}{2}=0\)
⇔ \(\left[{}\begin{matrix}cos\dfrac{3x}{2}=0\left(\alpha\right)\\cos\dfrac{x}{2}+2sin\dfrac{3x}{2}=0\left(\beta\right)\end{matrix}\right.\)
Giải \(\left(\alpha\right)\) quá đơn giản
Giải \(\left(\beta\right)\)
\(2\left(3sin\dfrac{x}{2}-4sin^3\dfrac{x}{x}\right)+cos\dfrac{x}{2}=0\)
⇔ \(-8sin^3\dfrac{x}{2}+6sin\dfrac{x}{2}\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)+cos\dfrac{x}{2}.\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)=0\)
⇔ \(-2sin^3\dfrac{x}{2}+6sin\dfrac{x}{2}.cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}.cos\dfrac{x}{2}+cos^3\dfrac{x}{2}=0\)
Xét \(x=k2\pi,k\in Z\) tức \(sin\dfrac{x}{2}=0\) có thỏa mãn phương trình không, nếu có kết luận về nghiệm
Dù trường hợp trên có thỏa mãn hay không thì tiếp tục xét trường hợp nữa là \(x\ne k2\pi,k\in Z\) tức \(sin\dfrac{x}{2}\ne0\). Rồi chia cả 2 vế phương trình lằng nhằng kia cho \(sin\dfrac{x}{2}\) và đưa về phương trình bậc 3 theo cot\(\dfrac{x}{2}\)
Nếu tham khảo theo cách của mình thì dùng công thức này :
sin3x
= sin2x . cosx + cos2x . sinx
= 2sinx . cosx . cosx + (1 - 2sin2x) . sinx
= 2sinx . cos2x + sinx - 2sin3x
= 2sinx (1 - sin2x) + sinx - 2sin3x
= 3sinx - 4sin3x
Giải phương trình lượng giác: \(sin^23x.cos2x+sin^2x=0\)
\(sin^23x.cos2x+sin^2x=0\)
\(\left(3sinx-4sin^3x\right)^2.cos2x+sin^2x=0\)
\(sin^2x\left[\left(3-4sin^2x\right)^2.cos2x+1\right]=0\)
\(sin^2x\left[\left(1+2cos2x\right)^2.cos2x+1\right]=0\)
\(sin^2x\left(4cos^22x+1\right)\left(cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\text{π}\\2x=k2\text{π}\end{matrix}\right.\)\(\Leftrightarrow x=k\text{π}\)
\(sin^23xcos2x+sin^2x=0\rightarrow\dfrac{1-cos6x}{2}.cos2x+\dfrac{1-cos2x}{2}=0\\ \rightarrow cos6xcos2x=1\rightarrow cos8x+cos4x=2\\ \rightarrow cos8x=cos4x=1\rightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)
giải các phương trình sau : a) \(\cos^2x-3\sin^2x=0\) ; b) \(\sin x+\sin^2\frac{x}{2}=0,5\)
cây a) bạn xét 2 TH :
cosx=0<=> x= pi/2+k.pi. k là nghiệm ptcosx khác 0. chia 2 vế cho cosx^2 ta được pt bậc hai với hàm tan rồi giải ra như bình thườngb) bạn sd công thức hạ bậc là xong r
giải các phương trình sau : a) \(\cos^2x-3\sin^2x=0\) ; b) \(\sin x+\sin^2\frac{x}{2}=0,5\)
giải các phương trình sau : a) \(\cos^2x-3\sin^2x=0\) ; b) \(\sin x+\sin^2\frac{x}{2}=0,5\)
giải các phương trình sau : a). sin 2x+sin2 x=1/2
b.2sin2 x +3 sin x cosx + cos2 x= 0
c.sin2 x/2 + sin x - 2 cos 2 x/2 = 1/2
Giải phương trình
\(\left(sin^2x+\dfrac{1}{sin^2x}\right)+4\left(sinx+\dfrac{1}{sinx}\right)-7=0\)
giải phương trình: sin(2x+pi/2)=sin(x-pi/3)
\(sin\left(2x+\dfrac{\Omega}{2}\right)=sin\left(x-\dfrac{\Omega}{3}\right)\)
=>\(\left[{}\begin{matrix}2x+\dfrac{\Omega}{2}=x-\dfrac{\Omega}{3}+k2\Omega\\2x+\dfrac{\Omega}{2}=\Omega-x+\dfrac{\Omega}{3}+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{5}{6}\Omega+k2\Omega\\3x=\dfrac{4}{3}\Omega-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{5}{6}\Omega+k2\Omega\\x=\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\end{matrix}\right.\)
giải phương trình: sin(2x+pi/2)=sin(x-pi/3)
Lời giải:
$\sin (2x+\frac{\pi}{2})=\sin (x-\frac{\pi}{3})$
\(\Rightarrow \left[\begin{matrix}\ 2x+\frac{\pi}{2}=x-\frac{\pi}{3}+2k\pi\\ 2x+\frac{\pi}{2}=\pi -(x-\frac{\pi}{3})+2k\pi\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix}\ x=\pi (2k-\frac{5}{6})\\ x=\frac{1}{3}\pi (\frac{5}{6}+2k)\end{matrix}\right.\) với $k$ nguyên bất kỳ.