5x - (24 - 2x) = -24 + 20 + 3x
tìm x biết:
a) x^2 + 10x -2x -20 = 0
b) x^2 -5x -24 =0
c) x^2 - 8x + 3x - 24 +0
a) x2 + 10x - 2x - 20 = 0
=> x(x + 10) - 2(x + 10) = 0
=> (x - 2)(x + 10) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)
b) \(x^2-5x-24=0\)
\(\Rightarrow x^2-5x+\frac{25}{4}-\frac{121}{4}=0\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2=\frac{121}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2=\left(-\frac{11}{2}\right)^2\\\left(x-\frac{5}{2}\right)^2=\left(\frac{11}{2}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{2}=\left(-\frac{11}{2}\right)\\x-\frac{5}{2}=\frac{11}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{6}{2}=3\\x=\frac{16}{2}=8\end{cases}}\)
c) x2 - 8x + 3x - 24 = 0
=> x(x - 8) + 3(x - 8) = 0
=> (x + 3)(x - 8) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
tìm x
x^2+3x-2x-6=0
x^2+6x+x+6=0
x^2-4x+5x-20=0
x^2-8x-3x+24=0
a) x^2 +3x-2x-6=0
x^2 + x = 6
x^2 + 0.5x + 0.5x = 6
x (x + 0.5) + 0.5 (x + 0.5) =5.75
(x+0.5)^2 = 5.75
a . 3x+(-24)= -9-(2x)
b .80+(5x)=9+(-20)
BẠN NÀO THÔNG MINH GIẢI HỘ MÌNH VỚI
a . 3x+(-24)= -9-(2x)
= 3x+(-24) = -9 +( -2x)
= 3x + 2x = -9 + 24
= 5x = 15
x = 15 : 5
x = 3
b .80+(5x)=9+(-20)
= 80 + 5x = -11
5x = -11 - 80
5x = -91
x = -91 : 5
x = -18,2 = \(\dfrac{-91}{5}\)
x
giúp emmmmm
l) (3x – 6) .3 = 34
m) (5x – 24) .38 = 2.311
n) 3x = 9
p) 4x = 64
q) 2x = 16
l) (3x – 6) .3 = 34
⇒ ( 3x-6) = 34:3= 33
⇒ 3x = 27 + 6=33 ⇒x=11
m) (5x – 24) .38 = 2.311
⇒ ( 5x-24).38=622
⇒ 5x-24=622:38 ⇒\(\dfrac{311}{19}\)
⇒ x =\(\left(\dfrac{311}{19}+24\right)\):5
⇒ x=\(\dfrac{767}{95}\)
n) 3x = 9
⇒ x = 9:3 ⇒ 3
p) 4x = 64
⇒ x = 64 :4 ⇒16
q) 2x = 16
⇒ x= 16 : 2 ⇒ 8
giải pt 2x-13 /2x-16 + 2x-12/x-8 = 7/8 + 2(5x-39)/3x-24
Bài 1: Tìm x là STN biết:
1/ 5x - 2 - 32 = 24 - ( 68 : 66 - 62)
2/ 3x + 42 = 196 : (193 x 192) - 3.12014
3/ 2x + 2x + 4 = 272
4/ 3 + 2x - 1 = 24 - \([4^2-(2^2-1)]\)
1: =>\(5^{x-2}-9=2^4-\left(6^2-6^2\right)\)
=>\(5^{x-2}=16+9=25\)
=>x-2=2
=>x=4
2: \(\Leftrightarrow3^x+16=19^6:19^5-3=19-3=16\)
=>3^x=0
=>x=0
3: \(\Leftrightarrow2^x+2^x\cdot16=272\)
=>2^x*17=272
=>2^x=16
=>x=4
4: \(\Leftrightarrow2^{x-1}+3=24-\left(4^2-2^2+1\right)=24-\left(16-4+1\right)\)
=>\(2^{x-1}+3=24-16+4-1=8+4-1=12-1=11\)
=>2^x-1=8
=>x-1=3
=>x=4
thực hiện phép chia và tìm x để số dư bằng 0
a)(x^3-x^2-14x+24):(x^3+x-12)
b)(x^5+4x^3+3x^2-5x+15);(x^3-x+3)
c)(2x^4+2^3+3x^2-5x-20):(x^2+x+4)
d)(2x^4-14x^3+19x^2-20x+9):(x^2-4x+1)
giúp mk gấp vs ah!!!!!!
1. So sánh 1+căn 15 và căn 24
2.Giải phương trình
a. x^3-5x^2=2x^2-10
b.3x-7 căn x= 20
c.1+ căn 3x > 3
d. x^2 - x căn x - 5x - căn x - 6 = 0
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }
tìm x biết
1, -3x2 + 5x = 0
2, x2 +3x - 2x-6 = 0
3, x2 + 6x - x -6 = 0
4, x2 + 2x - 3x - 6 = 0
5, x2 - 6x - 4x +24 =0
6, x2 - 8x +3x -24 = 0
7, x2 -5x - 24 = 0
giúp mình với, mình cần gấp
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3