Tính tổng sau:
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+\dfrac{4}{16}+...+\dfrac{10}{2^{10}}\)
Tính tổng S = \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{8}\) + \(\dfrac{4}{16}\) + ... + \(\dfrac{10}{2^{10}}\)
Ta có S = \(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+\dfrac{4}{16}+...+\dfrac{10}{2^{10}}\)
= \(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{10}{2^{10}}\)
2S = 1 + \(\dfrac{2}{2}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{10}{2^9}\)
2S - S = ( 1 + \(\dfrac{2}{2}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{10}{2^9}\)) - ( \(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{10}{2^{10}}\))
S = 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}-\dfrac{10}{2^{10}}\)
Đặt A = 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)
2A = 2 + 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\)
2A - A = ( 2 + 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\)) - ( 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\))
A = 2 - \(\dfrac{1}{2^9}\)
⇒ S = 2 - \(\dfrac{1}{2^9}\) - \(\dfrac{10}{2^{10}}\) = \(\dfrac{2^{11}}{2^{10}}-\dfrac{2}{2^{10}}-\dfrac{10}{2^{10}}=\dfrac{2^2\left(2^9-3\right)}{2^{10}}=\dfrac{2^9-3}{2^8}\)
Vậy S = \(\dfrac{2^9-3}{2^8}\)
tính tổng S = \(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+\dfrac{4}{16}+...+\dfrac{10}{2^{10}}\)
làm nhanh hộ mình với
1,\(\dfrac{3}{16}\)- ( x - \(\dfrac{5}{4}\) ) - ( \(\dfrac{3}{4}\) + \(\dfrac{-7}{8}\) - 1 ) = \(2\dfrac{1}{2}\)
2,\(\dfrac{1}{2}\) . ( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\) ) = \(\dfrac{1}{5}\) - x + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\) )
Giúp mik nhanh với ạ .
\(\dfrac{3}{16}\) - (\(x\) - \(\dfrac{5}{4}\)) - ( \(\dfrac{3}{4}\) - \(\dfrac{7}{8}\) - 1) = 2\(\dfrac{1}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) + 1 = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + ( \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\)) + (\(\dfrac{7}{8}\) + 1) = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\) = \(\dfrac{5}{2}\)
( \(\dfrac{3}{16}\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\)) - \(x\) = \(\dfrac{5}{2}\)
\(\dfrac{41}{16}\) - \(x\) = \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{41}{16}\) - \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{1}{16}\)
2, \(\dfrac{1}{2}\).( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\)) = \(\dfrac{1}{5}\) - \(x\) + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\))
\(\dfrac{1}{2}\).(-\(\dfrac{11}{15}\)) = \(\dfrac{1}{5}\) - \(x\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{5}\)
- \(\dfrac{11}{30}\) = ( \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)+ \(\dfrac{1}{15}\)) - \(x\)
- \(\dfrac{11}{30}\) = \(\dfrac{7}{15}\) - \(x\)
\(x\) = \(\dfrac{7}{15}\) + \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{5}{6}\)
Thực hiện các phép tính:
\(a,\left(\dfrac{7}{16}+\dfrac{-1}{8}+\dfrac{9}{32}\right):\dfrac{5}{4}\) \(b,10\dfrac{2}{9}+2\dfrac{3}{5}+6\dfrac{2}{9}\)
\(c,30\%-2\dfrac{2}{5}+0,2.\dfrac{1}{2}\) \(d,\dfrac{-25}{30}.\dfrac{37}{44}+\dfrac{-25}{30}.\dfrac{13}{44}+\dfrac{-25}{30}.\dfrac{-6}{44}\)
a: \(=\dfrac{14-2+9}{32}\cdot\dfrac{4}{5}=\dfrac{21}{5}\cdot\dfrac{1}{8}=\dfrac{21}{40}\)
b: \(=10+\dfrac{2}{9}+2+\dfrac{3}{5}+6+\dfrac{2}{9}=18+\dfrac{47}{45}=\dfrac{857}{45}\)
c: \(=\dfrac{3}{10}-\dfrac{12}{5}+\dfrac{1}{10}=\dfrac{4}{10}-\dfrac{12}{5}=\dfrac{2}{5}-\dfrac{12}{5}=-2\)
d: \(=\dfrac{-25}{30}\left(\dfrac{37}{44}+\dfrac{13}{44}-\dfrac{6}{44}\right)=\dfrac{-25}{30}\cdot1=-\dfrac{5}{6}\)
Cho A= \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+\dfrac{1}{10^2}+...+\dfrac{1}{160^2}\)
Chứng minh: \(\dfrac{1}{8}< A< \dfrac{3}{16}\)
1,\(\dfrac{3}{16}\)- ( x - \(\dfrac{5}{4}\) ) - ( \(\dfrac{3}{4}\) + \(\dfrac{-7}{8}\) - 1 ) = \(2\dfrac{1}{2}\)
2,\(\dfrac{1}{2}\) . ( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\) ) = \(\dfrac{1}{5}\) - x + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\) )
Giúp mik nhanh với ạ
`@` `\text {Ans}`
`\downarrow`
`1,`
`3/16 - (x - 5/4) - (3/4 + (-7)/8 - 1) = 2 1/2`
`=> 3/16 - x + 5/4 - (-1/8 - 1) = 2 1/2`
`=> 3/16 - x + 5/4 - (-9/8) = 2 1/2`
`=> 3/16 - x + 19/8 = 2 1/2`
`=> 3/16 - x = 2 1/2 - 19/8`
`=> 3/16 - x =1/8`
`=> x = 3/16 - 1/8`
`=> x = 1/16`
Vậy, `x = 1/16`
`2,`
`1/2* (1/6 - 9/10) = 1/5 - x + (1/15 - (-1)/5)`
`=> 1/2 * (-11/15) = 1/5 - x + 4/15`
`=> -11/30 = x + 1/5 - 4/15`
`=> x + (-1/15) = -11/30`
`=> x = -11/30 + 1/15`
`=> x = -3/10`
Vậy, `x = -3/10.`
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
Tìm y:
-y:\(\dfrac{1}{2}\)-\(\dfrac{5}{2}\)=4\(\dfrac{1}{2}\)
Tính:
N = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)....\(\dfrac{899}{900}\).\(\dfrac{960}{961}\)
S=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{10.11.12}\)+\(\dfrac{1}{11.12.13}\)
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
Đ, S?
a) \(\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\) b) \(\dfrac{7}{10}-\dfrac{1}{5}=\dfrac{6}{5}\)
c) \(\dfrac{5}{4}+\dfrac{5}{12}=\dfrac{5}{16}\) d) \(\dfrac{3}{6}+\dfrac{2}{3}=\dfrac{7}{6}\)
a) Đ
b) S
\(\dfrac{7}{10}-\dfrac{1}{5} \\ =\dfrac{7}{10}-\dfrac{2}{10}\\ =\dfrac{5}{10}=\dfrac{1}{2}\)
c) S
\(\dfrac{5}{4}+\dfrac{5}{12}\\ =\dfrac{15}{12}+\dfrac{5}{12}\\ =\dfrac{20}{12}=\dfrac{5}{3}\)
d) Đ