Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 7 2016 lúc 16:41

Áp dụng bđt Bunhiacopxki , ta có : \(4=\left(x+y\right)^2=\left(\frac{1}{\sqrt{3}}.\sqrt{3}.x+1.y\right)^2\le\left[\left(\frac{1}{\sqrt{3}}\right)^2+1^2\right].\left(3x^2+y^2\right)\)

\(\Rightarrow3x^2+y^2\ge\frac{4}{\frac{1}{3}+1}=3\) \(\Rightarrow A\ge3\)

Vậy Min A = 3 \(\Leftrightarrow\hept{\begin{cases}x+y=2\\3x=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)

duy khang nguyễn
Xem chi tiết
Nguyễn Quang Định
19 tháng 3 2017 lúc 8:11

x+y=2=>y=2-x

A=3x2+y2

A=3x2+(2-x)2

A=4x2-4x+4

A=(2x-1)2+3

Vậy: MinA=3

Phan Nguyễn Hoàng Vinh
19 tháng 3 2017 lúc 9:09

3 nhé

Vy Lam
Xem chi tiết
Phạm Thanh An
1 tháng 11 2015 lúc 20:12

đúng rùi đó Nguyễn Văn Tân

Hoàng Trần Đình Tuấn
1 tháng 11 2015 lúc 20:10

rồi đó

Nguyễn Tuấn Khôi
Xem chi tiết
tran duong bac
Xem chi tiết
Trần Tiến Minh
Xem chi tiết
Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 17:52

\(A=\dfrac{3x^2-2xy}{x^2+2xy+y^2}=\dfrac{15x^2-10xy}{5\left(x^2+2xy+y^2\right)}=\dfrac{-\left(x^2+2xy+y^2\right)+16x^2-8xy+y^2}{5\left(x^2+2xy+y^2\right)}\)

\(A=-\dfrac{1}{5}+\dfrac{\left(4x-y\right)^2}{5\left(x+y\right)^2}\ge-\dfrac{1}{5}\)

\(A_{min}=-\dfrac{1}{5}\) khi \(4x-y=0\)

Huyền Trần
Xem chi tiết
Lightning Farron
23 tháng 4 2017 lúc 19:06

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(3+1\right)\left(3x^2+y^2\right)\ge\left(3x+y\right)^2\)

\(\Rightarrow4\left(3x^2+y^2\right)\ge\left(3x+y\right)^2\)

\(\Rightarrow4\left(3x^2+y^2\right)\ge\left(3x+y\right)^2=1^2=1\)

\(\Rightarrow M=3x^2+y^2\ge\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{4}\)

Đinh Phương Linh
Xem chi tiết
pham trung thanh
19 tháng 11 2017 lúc 10:34

Bạn nhân 4 lên rồi tách ra hằng đẳng thức

Phúc
19 tháng 11 2017 lúc 10:48

Ta có 

A=x2+xy+y2-3x-3y+2016

=>4A=4x2+4xy+y2 -6(2x+y) + 9 + 3(y2-2y+1) +8052

         =(2x+y)2-6(2x+y)+9 + 3(y-1)2 +8052 

        =(2x+y-3)2+3(y-1)2+8052>= 8052

     =>A>=2013

Dấu bang xay ra khi x=y=1

Trịnh Quỳnh Nhi
19 tháng 11 2017 lúc 10:50

Ta có A= x2+xy+y2+3x-3y+2016

=> 2A= 2x2+2xy+2y2+6x-6y+4032

=> 2A=(x2+2xy+y2)+(x2+6x+9)+(y2-6y+9)+ 4014

=> 2A= (x+y)2+ (x+3)2+(y-3)2+4014

=> 2A >= 4014=> A>=2007

Dấu "=" xảy ra khi x=-3; y=-3